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Vorwort

Das vorliegende Skript zur Optik entstammt einer Vorlesung zur

"

Physik III\,

die von Herrn Prof. Konrad Kleinknecht* und Herrn Prof. Ewald Reya** im

Wintersemester 1984/85 an der Universit�at Dortmund im Wechsel gehalten

wurde. Dieser Wechsel beruht auf einem der Grundprinzipien der integrierten

Anf�angerkurse zur Physik an der Universit�at Dortmund, welche den Studieren-

den sowohl die experimentellen wie auch die theoretischen Aspekte in gleicher

Weise vor Augen f�uhren sollen. Da jedoch in diesem Semester noch andere

Themen, u.a. der gesamte Bereich der Lagrangeschen Mechanik, zu behandeln

war, kam die Optik dabei etwas zu kurz. Ich habe mich daher bem�uht, an

einigen Stellen ausf�uhrlicher zu sein, als es die Vorlesenden konnten.

Mainz, im September 1998 Stefan Groote***
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Optik

Die Optik ist eine der �altesten und zugleich eine der j�ungeren physikalischen

Disziplinen. Waren Ph�anomene der geometrischen Optik bereits im Alter-

tum bekannt und wurden von den antiken Kulturen untersucht, so ist erst im

20. Jahrhundert die ganze Bandbreite des Spektrums elektromagnetischer Wel-

len bis hin zum Radiofrequenzbereich erkannt und erforscht worden. Zugleich

zeigte der Dualismus zwischen Welle und Teilchen den Weg in ein neues Na-

turverst�andnis auf. In diesem Sinne wird in der Optik wohl der

�

Ubergang von

der klassischen zur Quantenmechanik am deutlichsten sichtbar und erfahrbar.

Auch wenn heutzutage mit der Quantenelektrodynamik ein theoretisches

Modell zur Verf�ugung steht, das die Ph�anomene der elektromagnetischenWech-

selwirkung in sich konstistent beschreibt, ist aufgrund der historischen Entwick-

lung, aber auch aufgrund praktischer Erw�agungen eine vielschichtige Beschrei-

bungsweise vorzuziehen. Wir unterscheiden je nach Energie der Strahlung und

dem Verh�altnis zwischen der Wellenl�ange und den r�aumlichen Abmessungen

der bestrahlten Strukturen drei verschiedene Bereiche der Optik:

Geometrische Optik: Die geometrische Optik ist anwendbar, wenn

die Energie der einzelnen Strahlungsteilchen (Photonen) klein gegen-

�uber der Nachweisemp�ndlichkeit der Apparatur und die Wellenl�ange

klein gegen�uber der Dimension der Objekte ist. Die geometrische

Optik beschreibt die Ausbreitung von Lichtstrahlen.

Wellenoptik: Auch hier ist die Photonenenergie klein gegen�uber

der Nachweisemp�ndlichkeit. Jedoch kommt hier die Wellenl�ange

in dem Bereich der r�aumlichen Strukturen, auf welche die Strahlung

f�allt. Die Wellenoptik beschreibt Beugungs- und Interferenzerschei-

nungen und bestimmt damit charakteristische Eigenschaften wie das

Au
�osungsverm�ogen einer optischen Apparatur.

Quantenoptik: Ist die Energie h� des einzelnen Strahlungsteilchens

so gro�, da� sie von dem Nachweisger�at aufgel�ost werden kann, so

gelangt man in den Bereich der quantenmechanischen Beschreibungs-

weise. Albert Einstein hat 1905 mit Hilfe der Quantenhypothese den

Photoe�ekt erkl�aren k�onnen. Ph�anomene, die allgemein mittels der

Quantenoptik beschrieben werden, sind die Emission und Absorption

von Photonen in Atomen und Kernen.

Den ersten beiden Bereichen werden die folgenden Kapitel gewidmet sein,

w�ahrend die Quantenoptik erst im Zusammenhang mit der Quantenmechanik

in der Vorlesung

"

Physik IV\ behandelt werden kann.
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1. Ausbreitung elektromagnetischer Wellen

Wie bereits in der Vorlesung

"

Physik II\ gezeigt wurde, ist die Ausbreitung

elektromagnetischer Wellen eine Konsequenz der Feldgleichungen, die erstmals

von James Clerk Maxwell (1831{1879) in geschlossener Form aufgestellt wurden

und seither zum Kernbestandteil der Elektrodynamik geh�oren. Im Rahmen der

Optik geht es vor allem um die Ausbreitung von elektromagnetischen Wellen in

verschiedenen Medien. Daher sollen hier die materieabh�angigen Maxwellschen

Gleichungen an den Anfang gestellt werden,

div

~

D = � rot

~

E = �

@

~

B

@t

div

~

B = 0 rot

~

H =

~

j +

@

~

D

@t

(1:1)

Dabei ist

~

E die elektrische Feldst�arke,

~

D die elektrische Verschiebungsdichte

oder freie elektrische Feldst�arke,

~

B die magnetische Feldst�arke und

~

H die freie

magnetische Feldst�arke. Der Begri�

"

frei\ bezieht sich in diesem Zusammen-

hang darauf, da� diese Gr�o�en, wie zu erkennen ist, �uber die Maxwellschen

Gleichungen an die �au�eren, also nicht durch die Felder selbst induzierten,

freien Ladungen und Stromdichten gekoppelt sind. Zwischen freien und e�ek-

tiven Feldst�arken bestehen die Zusammenh�ange

~

D = "

0

~

E +

~

P und

~

H =

1

�

0

~

B �

~

M (1:2)

mit der Polarisation

~

P und der Magnetisierung

~

M .

Die Dielektrizit�atskonstante "

0

= 8:854�10

�12

C

2

s

2

=kg m

3

und die Permea-

bilit�atskonstante �

0

= 4� � 10

�7

kg m=C

2

sind Naturkonstanten (der erstaunli-

che, mathematisch anmutende Wert f�ur �

0

r�uhrt daher, da� diese Konstante in

die De�nition der Stromst�arkeneinheit eingeht, die im internationalen Einhei-

tensystem eine Grundeinheit ist). In den meisten Medien wird die Polarisation

bzw. Magnetisierung, welche durch die angelegten Felder induziert wird, pro-

portional zu diesen Feldern. Der Proportionalit�at wird durch die elektrische

bzw. magnetische Suszeptibilit�at ein expliziter Ausdruck verliehen,

~

P = �

E

"

0

~

E und

~

M = �

M

~

H (1:3)

(Da� in der zweiten Beziehung die freie magnetische Feldst�arke benutzt wird,

hat historische Gr�unde). F�ur alle Medien, in denen diese Proportionalit�at

gegeben ist, lassen sich die Gleichungen (1.2) und (1.3) zusammenfassen zu

~

D = "

0

(1 + �

E

)

~

E =: "

0

"

~

E und

~

B = �

0

(1 + �

M

)

~

H =: �

0

�

~

H; (1:4)

und die neu eingef�uhrten Gr�o�en sind die Dielektrizit�at " und die Permeabilit�at

�, beides materialabh�angige Gr�o�en.
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1.1 Energie- und Impulssatz

Das elektromagnetische Feld vermag auf geladene Materie mechanisch Energie

und Impuls zu �ubertragen. Das bemerkte der Physiker J.H. Poynting bereits

1884. Diese

�

Ubertragung l�a�t sich mit Hilfe der Lorentzkraft

~

F = q(

~

E + ~v �

~

B); (1:5)

mit der das elektromagnetische Feld auf eine Punktladung q wirkt, beschrei-

ben und nach und nach durch reine Feldgr�o�en ausdr�ucken. Dies wollen wir

hier vollziehen. Die Leistung, also die mechanische Arbeit pro Zeiteinheit, ist

gegeben durch

dE

mech

dt

= ~v �

~

F = q~v � (

~

E + ~v �

~

B) = q~v �

~

E: (1:6)

Hier f�allt, wie auch nicht anders zu erwarten, die Wirkung des magnetischen

Feldes zun�achst heraus. Das elektrische Feld hingegen erzeugt einen elektri-

schen Strom, indem es die Ladung beschleunigt. Gehen wir nun zu einer kon-

tinuierlichen Ladungsverteilung �uber, so ist diese Leistung zu ersetzen durch

dE

mech

dt

=

Z

V

~

j �

~

E d

3

x: (1:7)

An dieser Stelle beginnt die Umstellung auf reine Feldgr�o�en. Denn der er-

zeugte Strom ruft wiederum ein magnetisches Feld hervor. Wir setzen f�ur

~

j die

passende Maxwellsche Gleichung ein und erhalten

dE

mech

dt

= �

Z

V

~

E �

�

@

~

D

@t

�r�

~

H

�

d

3

x: (1:8)

Als n�achstes wird sowohl bez�uglich der r�aumlichen wie der zeitlichen Ablei-

tung eine partielle Integration vollzogen, um nachher das Integral reduzieren

zu k�onnen. Zu beachten ist

r � (

~

E �

~

H) =

~

H � (r�

~

E)�

~

E � (r�

~

H);

@

@t

(

~

E �

~
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~

B �

~

H) = 2

~

E �

@

~

D

@t
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~

H �

@

~

B

@t

und damit

dE
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= �

Z

V
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~
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= �
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~
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~
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= �
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Z

V

w
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d

3
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~
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I

O

~

S � d~a (1:9)
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mit der Energiedichte

w

EM

=

1

2

(

~

E �D +

~

B �

~

H) (1:10)

des elektromagnetischen Feldes und der Energie
u�dichte

~

S =

~

E �

~

H: (1:11)

(auch als Poyntingscher Vektor bekannt) unter Verwendung des Gau�schen

Satzes. Zusammenfassend bedeutet die Gleichung (1.9), da� die Summe aus

mechanischer und elektromagnetischer Energie sich in dem Ma�e verringert, in

dem ein Energie
u� nach au�en erfolgt.

Auch die Impuls�ubertragung des elektromagnetischen Feldes k�onnen wir

durch reine Feldgr�o�en ausdr�ucken. Der Impuls�ubertrag pro Zeiteinheit ist

einfach die Kraft , hier ist also direkt die Lorentzkraft aus Gleichung (1.5) zu

verwenden. Wird erneut die Ladung durch eine kontinuierliche Ladungsvertei-

lung ersetzt, so folgt

d~p

mech

dt

=

Z

V

�

�

~

E +

~
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~

B

�

d

3
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~
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~
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�

@

~

D
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~

H

��

d

3

x: (1:12)

Zu beachten ist hier

~
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:

Der letzte Term f�allt, in Gleichung (1.12) eingesetzt, gegen den ersten Term

heraus. Gleiches ergibt sich f�ur den dritten Term, wobei ein analoger Aus-

druck mit @B

j

=@x

j

aufgrund der Maxwellschen Gleichungen erst gar nicht in

Erscheinung tritt. F�uhrt man als neue Gr�o�en also die Impulsdichte

~g =

~

D �

~

B (1:13)

und den Maxwellschen Spannungstensor T mit den Komponenten

T

ij

= E

i

D

j

+H

i

B

j

� u

EM

�

ij

(1:14)

ein, so schreibt sich Gleichung (1.12) schlie�lich in der Form

d~p

mech

dt

=

Z

V

�

�

@~g

@t

+

@T

ij

@x

j

�

d

3

x = �

d

dt

Z

V

~g d

3
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I

O

~e

i

T

ij

da

j

: (1:15)
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In Medien, die eine Linearit�at zwischen freiem und e�ektivem Feld gem�a� Glei-

chungen (1.4) zeigen, ist die Impulsdichte proportional zur Energiestromdichte,

wobei die Proportionalit�at durch ~g = ""

0

��

0

~

S gegeben ist. Da diese Propor-

tionalit�at damit jedoch f�ur jedes Medium anders ausf�allt, ist es sinnvoll, diese

beiden Dichten unabh�angig voneinander zu de�nieren. Gleichung (1.15) dr�uckt

aus, da� sich die

�

Anderung des Gesamtimpulses in einer

"

Verspannung\, also

einer Deformation der Ladungsverteilung �au�ert.

Eine Anmerkung zum Abschlu�, die etwas �uber den Rahmen hinausgreift.

Die beiden Gleichungen (1.9) und (1.15), die eigentlich vier Gleichungen dar-

stellen, lassen sich in einer relativistisch kovarianten Form schreiben. Aus der

Vorlesung

"

Physik II\ wissen wir bereits, da� sich Energie und Impuls zu ei-

nem Impulsvierervektor zusammenfassen lassen, der die Transformationseigen-

schaften eines Vektors im vierdimensionalen Minkowskiraum besitzt. Wir in-

tegrieren nun die Gleichungen �uber die Zeit und fassen die rechten Seiten ent-

sprechend zu einem vierdimensionalen Tensor zweiter Stufe zusammen, dem

elektromagnetischen Viererspannungstensor T = (T

��

),

p

�

mech

= �

I

T

��

da

�

; (1:16)

wobei da

�

die Komponente des di�erentiellen Ober
�achenvierervektors der

dreidimensionalen Hyper
�ache in Richtung der Koordinate x

�

darstellt, dessen

Ma� aus dem vierdimensionalen durch Fortlassen des Di�erentials dx

�

gebildet

wird, also d

4

x = dx

�

^ da

�

(keine Summation). T setzt sich zusammen aus

T

00

=

1

2

(

~

E �

~

D +

~

H �

~

B); T

0j

= (

~

E �

~

H)

j

;

T

i0

= (

~

D �

~

B)

i

; T

ij

= E

i

D

j

+H

i

B

j

�

1

2

(

~

E �

~

D +

~

H �

~

B)�

ij

:

Dieser vierdimensionale Spannungstensor wird in der allgemeinen Relativit�ats-

theorie als Inhomogenit�at der Gravitationsgleichung wieder auftreten.

1.2 Wellenausbreitung in Nichtleitern

Die Wellengleichungen f�ur das Vakuum sind bereits im Rahmen der Vorlesung

"

Physik II\ aufgestellt und gel�ost worden. Die Wellengleichungen f�ur homogene

und isotrope Nichtleiter sind diesen von der Struktur sehr �ahnlich. Denn f�ur

diese Medien lassen sich die Gleichungen (1.4) verwenden und zugleich ausnut-

zen, da� keine freien Ladungen oder Str�ome existieren. Setzt man ferner voraus,

da� die Dielektrizit�at und Permeabilit�at zeitlich konstante Materialgr�o�en sind,

so kann man die sich ergebenden Maxwellschen Gleichungen

r �

~

E = 0; r�

~

E +

@

~

B

@t

=

~

0;

r �

~

B = 0; r�

~

B � "

0

"�

0

�

@

~

E

@t

=

~

0

(1:17)
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durch wechselseitiges Einsetzen entkoppeln, man erh�alt zwei strukturell gleiche

Di�erentialgleichungen

�

~

E = "

0

"�

0

�

@

2

~

E

@t

2

; �

~

B = "

0

"�

0

�

@

2

~

B

@t

2

(� = r � r) (1:18)

f�ur die jeweils drei Vektorkomponenten, also sechs Gleichungen derselben Form

� =

1

v

2

@

2

 

@t

2

; (1:19)

wobei wir

v :=

1

p

"

0

"�

0

�

=

c

p

"�

(1:20)

verwendet haben. L�ost man diese Gleichungen und vergleicht die L�osung mit

derjenigen f�ur das Vakuum, so erkennt man, da� an die Stelle der Lichtge-

schwindigkeit c der Parameter v tritt, der sich somit als Geschwindigkeit der

elektromagnetischen Welle im Nichtleiter entpuppt. Da die Ferromagnete nicht

zu den Nichtleitern z�ahlen, kann zus�atzlich v � c=

p

" gen�ahert werden. Die

L�osung indes wollen wir hier nicht erneut vollziehen, stattdessen aber daran

erinnern, da� das elektrische und das magnetische Feld sowohl aufeinander wie

auf der Ausbreitungsrichtung senkrecht stehen. Diese Ausbreitungsrichtung ist

durch denWellenvektor

~

k beschrieben, und zwischen ihm und der Kreisfrequenz

! besteht die Beziehung

!

2

= v

2

~

k

2

=

c

2

~

k

2

"�

: (1:21)

Diese Gleichung ist die einfachste Ausf�uhrung einer Dispersionsrelation, von

der wir noch einige weitere kennenlernen werden.

1.3 Wellenausbreitung entlang von Leitern

Die Ausbreitung elektromagnetischer Wellen entlang von elektrischen Leitern

unterscheidet sich grunds�atzlich von derjenigen in Nichtleitern, da diese Leiter

der Wellenausbreitung spezielle Randbedingungen auferlegen. Eine Ausbrei-

tung entlang solcher sogenannter Wellenleiter erfordert jedoch eine entspre-

chend hohe Frequenz, denn der Verschiebungsstrom

~

j

D

= @

~

D=@t ist essenziell

wichtig f�ur die Entstehung elektromagnetischer Wellen, das elektrische Feld

mu� also gen�ugend stark zeitlich wechseln. Aus diesem Grund werden Wel-

lenleiter heute vornehmlich zur analogen und digitalen Signal�ubertragung in

Computernetzwerken und zur hochfrequenten Energie�ubertragung in Beschleu-

nigern und im Radar eingesetzt. Die hochfrequente Signal�ubertragung wird

allerdings bereits teilweise durch die Glasfasertechnologie bewerkstelligt. Ohne

Wellenleiter ergeben sich zwei gravierende Nachteile:

� Energieverlust bei der

�

Ubertragung

�

�

Ubersprechen (\cross talk") von einem Kabel zum n�achsten

F�ur die verschiedenen Frequenzen und damit Signaltaktzeiten werden verschie-

dene Wellenleiter eingesetzt:
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1. Im MHz-Bereich (Taktzeiten �s): Flachbandkabel und twisted pair

2. Im GHz-Bereich (Taktzeiten ns): Koaxialkabel

3. bei h�ochsten Frequenzen: Hohlleiter (Koaxialkabel ohne Innenleiter)

Die verschiedenen Typen von Wellenleitern sind in Abbildung 1.1 dargestellt.

Koaxial twisted pair Flachband

Dielekrikum

Dielektrikum

Abb. 1.1 Verschiedene Typen von Wellenleitern

1.3.1 Die Transmissionslinie

Als erstes Beispiel soll uns die Transmissi-

onslinie als Modell f�ur die einfachste Art ei-

nes Wellenleiters dienen. Sie ist im Gegen-

satz zu dem, was sp�ater noch kommen wird,

ohne Verwendung der Maxwellschen Glei-

chungen zu behandeln. Wie in der nebenste-

henden Abbildung 1.2 verdeutlicht, wird sie

durch die Beziehung zwischen Spannungen

und Str�omen entlang der Transmissionslinie

gekennzeichnet, wobei der untere Leiter ge-

erdet sein soll.

U(x)

I(x) I(x+   x)∆

∆U(x+   x)

x x+   x

U(x+   x)U(x+   x)U(x+   x)

∆

Abb. 1.2 Transmissionslinie

Als Materialgr�o�en f�uhren wir die Kapazit�at C

0

und die Induktivit�at L

0

pro L�angeneinheit ein. Die Spannungsdi�erenz zwischen den Orten x und x+

�x entlang der Transmissionlinie sorgt zum einen f�ur einen Strom
u�, es gilt

�U = U(x +�x) � U(x) = �L �

dI

dt

= �L

0

�x �

dI

dt

: (1:21)

Andererseits wird die Spannung aber gerade durch die auf der Leitung liegende

Ladung hervorgerufen, Q = C � U = C

0

�x � U , deren zeitliche Ver�anderung

�uber

�I = I(x +�x)� I(x) = �

dQ

dt

= �C

0

�x �

dU

dt

(1:22)

mit der Di�erenz zwischen den Stromst�arken an den verschiedenen Punkten

entlang der Transmissionslinie zusammenh�angt. Im Grenzfall �x! 0 l�a�t sich

aus diesen beiden Gleichungen ein Di�erentialgleichungssystem konstruieren,

welches die Transmission beschreibt,

@U

@x

= �L

0

@I

@t

;

@I

@x

= �C

0

@U

@t

: (1:23)



K. Kleinknecht, E. Reya : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Seite 11

Ineinander eingesetzt ergibt sich

@

2

U

@x

2

= L

0

C

0

@

2

U

@t

2

;

@

2

I

@x

2

= L

0

C

0

@

2

I

@t

2

: (1:24)

Diese strukturgleichen Wellengleichungen lassen sich allgemein beispielsweise

durch die Methode der Charakteristiken l�osen, f�ur die Spannung U ergibt sich

damit

U(x; t) = U

1

(x � vt) + U

2

(x + vt) mit v =

1

p

L

0

C

0

; (1:25)

wobei U

1

und U

2

zweifach di�erenzierbare Funktionen sind. F�ur die spezielle

L�osung

U(x; t) = U

0

sin(kx � !t)

mit ! = k � v wollen wir die Stromst�arke berechnen. Es ist

@I(x; t)

@t

= �

1

L

0

@V

@x

= �

kU

0

L

0

cos(kx� !t) und damit durch Integration

I(x; t) =

kU

0

!L

0

sin(kx � !t) =

k

!L

0

U(x; t) =:

U(x; t)

Z

:

Spannung und Stromst�arke sind also in Phase, der Wellenwiderstand

Z =

!L

0

k

= v � L

0

=

L

0

p

L

0

C

0

=

r

L

0

C

0

(1:25)

charakterisiert den Wellenleiter. Wird ein Wellenleiter mit einem Ohmschen

Widerstand desselben Wertes abgeschlossen, so wird eine Re
exion an diesem

Ende vermieden, denn der Strom, der durch diesen Widerstand lie�t, erzeugt

eine Spannung, die derjenigen gleich ist, die im selben Moment am Ende an-

gekommen ist. Aus ihrer Di�erenz bildet sich also keine Spannung, die eine

zur�ucklaufende Welle hervorrufen w�urde.

1.3.2 Randbedingungen f�ur einen perfekten Leiter

Ein perfekter Leiter ist ein solcher, der ei-

nem Strom keinen Widerstand entgegen-

setzt, seine Leitf�ahigkeit ist damit unbe-

schr�ankt gro�. Das hat zur Konsequenz,

da� jede Spannung, die innerhalb des Lei-

ters auftritt und damit jedes elektrische Feld

sofort kompensiert wird. Aus der Vorle-

sung zur

"

Physik II\ wissen wir nun aber

aufgrund des Stokesschen Satzes, da� die

Parallelkomponenten des elektrischen Fel-

des au�erhalb und innerhalb einer Leiter-

ober
�ache gleich gro� sind (siehe Abbil-

dung 1.3 oben). F�ur einen perfekten Leiter

verschwindet daher die Parallelkomponente

des elektrischen Feldes nahe der Ober
�ache.

B

E

E

B

Abb. 1.3 Der perfekte Leiter
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Auch f�ur das magnetische Feld ergibt sich f�ur einen perfekten Leiter eine

einfache Randbedingung. Legt man einen abge
achten Zylinder in Gedanken

so, da� die eine Fl�ache innerhalb, die andere au�erhalb des Leiters zu liegen

kommt, wie in Abbildung 1.3 unten gezeigt, so ergibt der Integralsatz

I

~

B � d~a = 0

die Gleichheit der Normalkomponenten des magnetischen Feldes innerhalb und

au�erhalb des Leiters. Das Magnetfeld innerhalb des Leiters induziert im Lei-

ter aber einen Strom, der aufgrund der Lenzschen Regel ein dem angelegten

Magnetfeld genau entgegengesetzes Magnetfeld erzeugt, also dieses im Leiter

ausl�oscht. Damit verschwindet die Normalkomponente des Magnetfeldes auch

au�erhalb des Leiters. Randbedingungen an den Ober
�achen perfekter Leiter

sind also

~

E

k

=

~

0 und

~

B

?

=

~

0: (1:26)

F�ur einen Hohlleiter wird danach getrachtet, die Eigenschaften eines perfekten

Leiter duch Verwendung beispielsweise versilberten Kupfers oder gar eines su-

praleitenden Materials m�oglichst gut zu erreichen. Wir wollen daher im folgen-

den Abschnitt den idealen Hohlleiter diskutieren, welcher den Idealfall dieser

Bestrebungen darstellt, dessen metallische Begrenzung der elektromagnetischen

Wellenausbreitung also die oben genannten Randbedingungen setzt.

1.4 Der Hohlleiter

Die Wellengleichung f�ur den idealen Hohlleiter l�a�t sich aus der vollst�andigen

Wellengleichung (1.19) zun�achst durch Separation der beiden Abh�angigkeiten

bez�uglich der Zeit und der einzigen freien Richtung, die wir als z-Richtung

w�ahlen, vereinfachen. Diese Separation liefert

�

@

2

@x

2

+

@

2

@y

2

+

!

2

v

2

� k

2

z

�

�(x; y) = 0; (1:27)

wobei � erneut f�ur die Komponenten des elektrischen und magnetischen Fel-

des steht. Die absepartierte Funktion beschreibt die Ausbreitung einer ebe-

nen Welle mit Kreisfrequenz ! und Wellenzahl k

z

in z-Richtung und l�a�t

sich f�ur eine vorw�artslaufende Welle als sin(k

z

z � !t) beschreiben. Wie sich

nachher noch herausstellen wird, sind die L�osungen der reduzierten Wellen-

gleichung (1.27) nicht eindeutig durch die Randbedingungen gegeben. Um

die Schwingungen in sogenannten Moden klassi�zieren zu k�onnen, wird eine

zus�atzliche Annahme �uber das globale Verschwinden der z-Komponente eines

der beiden Felder gemacht. Man spricht von : : :

: : : transversal magnetischen Wellen (TM-Mode),

wenn die z-Komponente des Magnetfeldes verschwindet, und von : : :

: : : transversal elektrischen Wellen (TE-Mode),

wenn die z-Komponente des elektrischen Feldes verschwindet.
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1.4.1 Longitudinales Feld im idealen Hohlleiter

Im folgenden wollen wir uns mit dem TM-Mode befassen und zun�achst die

Wellengleichung f�ur die z-Komponente des elektrischen Feldes l�osen. Wir tun

auch dies durch eine Separation der Variablen,

E

z

(x; y) = E

1

(x)E

2

(y) )

@

2

E

z

@x

2

=

d

2

E

1

dx

2

E

2

;

@

2

E

z

@y

2

= E

1

d

2

E

2

dy

2

;

also

d

2

E

1

dx

2

E

2

+E

1

d

2

E

2

xy

2

+

�

!

2

v

2

� k

2

z

�

E

1

E

2

= 0 oder

1

E

1

d

2

E

1

dx

2

= �

�

!

2

v

2

� k

2

z

+

1

E

2

d

2

E

2

dy

2

�

:

Die linke Seite dieser Gleichung ist eine Funktion von x, die rechte eine von y.

Daher m�ussen beide konstant sein, und als Konstante w�ahlen wir �k

2

x

. Dann

entkoppelt diese Gleichung zu

d

2

E

1

dx

2

= �k

2

x

E

1

;

d

2

E

2

dy

2

= �

�

!

2

v

2

� k

2

z

� k

2

x

�

E

2

=: �k

2

y

E

2

;

die allgemeinen L�osungen sind

E

1

(x) = A

1

cos(k

x

x) +B

1

sin(k

x

x) und E

2

(y) = A

2

cos(k

y

y) +B

2

sin(k

y

y):

Nun kommt die Randbedingung ins Spiel. Die z-Komponente des elektrischen

Feldes verschwindet auf den Begrenzungen des Hohlleiters. Betrachten wir

einen Hohlleiter mit rechteckiger Querschnitts
�ache der Kantenl�angen a und b

in x- bzw. y-Richtung, so k�onnen wir als Randbedingungen

E

z

(0; y) = E

z

(a; y) = 0 und E

z

(x; 0) = E

z

(x; b) = 0

ansetzen. F�ur die allgemeinen L�osungen bedeutet dies

E

1

(0) = 0 ) A

1

= 0; E

1

(a) = 0 ) B

1

sin(k

x

a) = 0 ) k

x

a = m�;

E

2

(0) = 0 ) A

2

= 0; E

2

(b) = 0 ) B

2

sin(k

y

b) = 0 ) k

y

b = n�;

wobei m und n ganze Zahlen sind. Wir nennen diesen E�ekt der Zuordnung

ganzer Zahlen zum Wellenvektor eine Quantisierung und die Richtung, in der

sie auftritt, die Quantisierungsrichtung. Im betrachteten Hohlleiter sind diese

Quantisierungsrichtungen also durch x und y gegeben. So quantisiert, ergibt

sich

E

z

(~r; t) = E

0

sin(k

x

x) sin(k

y

y) sin(k

z

z � !t)

mit k

x

=

m�

a

; k

y

=

n�

b

und

k

2

z

=: k

2

mn

=

!

2

v

2

� k

2

x

� k

2

y

=

!

2

v

2

�

�

m

2

a

2

+

n

2

b

2

�

�

2

: (1:28)
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Zu erkennen ist, da� dieser letzte Ausdruck nicht f�ur alle Werte von ! positiv

ist. Es gibt vielmehr eine Abschneidefrequenz

!

mn

= �v

r

m

2

a

2

+

n

2

b

2

; (1:29)

f�ur die k

mn

verschwindet und unterhalb derer die Wellenzahl imagin�ar wird.

Dies bedeutet, da� der Hohlleiter nur Frequenzen leiten kann, deren Frequenz

h�oher als !

mn

ist. Ein Hohlleiter wirkt also als Hochpa�. F�ur Frequenzen

unterhalb der minimalen Abschneidefrequenz !

1;1

ist dringend ein Innenleiter

erforderlich. Mit diesem Innenleiter sind dann sowohl elektrisches als auch

magnetisches Feld transversal, wir sprechen von dem TEM-Mode.

1.4.2 Phasen- und Gruppengeschwindigkeit

Am Beispiel des Hohlleiters lassen sich am besten die verschiedenen Konzepte

der Ausbreitungsgeschwindigkeit elektromagnetischer und auch anderer Wel-

lenph�anomene veranschaulichen. Stellen wir Gleichung (1.28) nach der Kreis-

frequenz ! um, so erhalten wir

! = v

q

k

2

x

+ k

2

y

+ k

2

z

=: v � k: (1:30)

Nun ist alleine die z-Richtung f�ur die Wellenausbreitung zust�andig. Damit

aber driften die verschiedenen De�nitionen f�ur die Ausbreitungsgeschwindigkeit

auseinander:

- Die Wellengeschwindigkeit

v = c=

p

"�

- Die Phasengeschwindigkeit

v

Ph

=

!

k

z

= v

q

k

2

x

+ k

2

y

+ k

2

z

k

z

= v

k

k

z

;

sie ist gr�o�er als die Wellengeschwindigkeit v.

- DieGruppengeschwindigkeit

v

Gr

=

@!

@k

z

=

vk

z

q

k

2

x

+ k

2

y

+ k

2

z

= v

k

z

k

;

sie ist kleiner als die Wellengeschwindigkeit v.

Vielleicht lassen sich die Bedeutungen und

Unterschiede am besten am Beispiel einer

schr�ag durch einen Kanal 
ie�enden Welle

veranschaulichen, wie es in Abbildung 1.4

gezeigt ist. Auch im Fall der elektroma-

gnetischen Wellenausbreitung im Hohlleiter

l�a�t sich ein Winkel ' de�nieren,

sin' =

k

z

k

=

k

z

q

k

2

x

+ k

2

y

+ k

2

z

:

ϕ

Ph

Grv    t

v    t

c t

Abb. 1.4 Wellenausbreitung im Kanal
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mit dem einzigen Unterschied, da� die Wellenzahl hier in x- und y-Richtung

quantisiert ist. Bis auf diese Einschr�ankung gilt aber auch f�ur diesen etwas

unanschaulichen Vorgang

v

Ph

=

v

sin'

und v

Gr

= v sin':

1.4.3 Transversales Feld im idealen Hohlleiter

Ist einmal die z-Komponente des elektrischen Feldes bestimmt, so ergeben sich

f�ur den TM-Mode die anderen Komponenten des elektromagnetischen Feldes

�uber die Maxwellschen Gleichungen. Die Herleitung ist zwar etwas un�ubersicht-

lich, soll hier aber dennoch vorgenommen werden, da sie zeigt, an welcher Stelle

die Forderung der Transversalit�at des magnetischen Feldes eingeht. Zun�achst

einmal gen�ugen die Randbedingungen nicht, um auch E

x

und E

y

eigenst�andig

zu bestimmen. Wir haben aufgrund der Geometrie als Forderungen lediglich

E

x

(x; 0) = E

x

(x; b) = 0 und E

y

(0; y) = E

y

(a; y) = 0. Dies erm�oglicht uns nur

die Bestimmung jeweils einer Quantisierungsrichtung, L�osungen sind also

E

x

(~r; t) = (A

x

cos(k

x

x

x) +B

x

sin(k

x

x

x)) sin(k

x

y

y) sin(k

z

z � !t+ �

x

);

E

y

(~r; t) = sin(k

y

x

x)(A

y

cos(k

y

y

y) +B

y

sin(k

y

y

y)) sin(k

z

z � !t+ �

y

)

(k

y

x

und k

x

y

sind quantisiert). Doch nun kommen die Maxwellschen Gleichungen

ins Spiel. So ergibt sich als erste Forderung

0 = div

~

E =

@E

x

@x

+

@E

y

@y

+

@E

z

@z

=

= k

x

x

(�A

x

sin(k

x

x

) +B

x

cos(k

x

x

)) sin(k

x

y

y) sin(k

z

z � !t+ �

x

)+

+ k

y

y

sin(k

y

x

x)(�A

y

sin(k

y

y

y) +B

y

cos(k

y

y

y)) sin(k

z

z � !t+ �

y

)+

+ k

z

E

0

sin(k

x

x) sin(k

y

y) cos(k

z

z � !t):

Der Vergleich der verschiedenen funktionalen Abh�angigkeiten liefert �

x

= �

y

=

�=2, k

x

x

= k

y

x

= k

x

, k

x

y

= k

y

y

= k

y

und schlie�lich noch

k

x

A

x

+ k

y

A

y

= k

z

E

0

und B

x

= B

y

= 0: (1:31)

Dies sind bereits erhebliche Vereinfachungen, es ist

E

x

(~r; t) = A

x

cos(k

x

x) sin(k

y

y) cos(k

z

z � !t);

E

y

(~r; t) = A

y

sin(k

x

x) cos(k

y

y) cos(k

z

z � !t);

E

z

(~r; t) = E

0

sin(k

x

x) sin(k

y

y) sin(k

z

z � !t):

A

x

und A

y

sind noch nicht bestimmt, doch soll uns dies vorerst nicht st�oren.

Wir erhalten das magnetische Feld durch Integration der Gleichung @

~

B=@t =

v

2

rot

~

E,

!B

x

(~r; t) = v

2

(k

y

E

0

+ k

z

A

y

) sin(k

x

x) cos(k

y

y) cos(k

z

z � !t);

!B

y

(~r; t) = v

2

(�k

z

A

x

� k

x

E

0

) cos(k

x

x) sin(k

y

y) cos(k

z

z � !t);

!B

z

(~r; t) = v

2

(�k

x

A

y

+ k

y

A

x

) cos(k

x

x) cos(k

y

y) sin(k

z

z � !t):
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Die Gleichung div

~

B = 0 ist mit diesen L�osungen trivial erf�ullt. Und wenn man

erneut die elektrischen Feldkomponenten �uber @

~

E=@t = �rot

~

B ausrechnet, so

ergibt sich im Vergleich mit den Ausdr�ucken, von denen wir ausgegangen sind

und unter Verwendung von Gleichung (1.30) nur noch einmal (1.31). Wir sind

also dazu gezwungen, eine der Komponenten des elektromagnetischen Feldes

auf Null zu setzen, und dies sind gerade die eingangs erw�ahnten TM- und

TE-Moden. F�ur die TM-Mode setzen wir die Amplitude von B

z

auf Null,

k

x

A

y

= k

y

A

x

) A

x

=

k

x

k

z

E

0

k

2

x
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2

y
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y

=

k

y

k

z

E

0

k

2

x
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2

y

und erhalten

E
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0

k

x

k

z

k

2

x
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2

y
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x

x) sin(k

y

y) cos(k

z

z � !t);

E

y
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0

k

y

k

z

k

2

x
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2

y
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x
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y
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z
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E

z

= E

0
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x
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y
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z

z � !t);
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0

k

y

!

k

2

x
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2

y
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x

x) cos(k

y

y) cos(k

z
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B
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0

k

x

!

k

2

x
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2

y
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x

x) sin(k

y

y) cos(k

z

z � !t);

B

z

= 0:

Obwohl wir in diesem Kapitel mit dem TM-Mode begonnen haben, l�a�t sich

der TE-Mode hier rekonstruieren. Dazu setzen wir !B

0

= v

2

(k

y

A

x

� k

x

A

y

)

und E

0

= 0, also

k

x

A
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:

Es ergibt sich

E
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=
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z
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PrüfsondeSkala Frequenz-
messer

Mikrowellen-
generator

Abb. 1.5 Versuchsaufbau zur Ausmessung eines Hohlleiters

1.4.4 Versuch zum Hohlleiter

Wir wollen die Transmission eines Hohlleiters experimentell vermessen. Dazu

dient die Versuchsanordnung, die in Abbildung 1.5 gezeigt ist. Die elektroma-

gnetische Strahlung wird in einem Mikrowellengenerator erzeugt, ihre Frequenz

in einem Frequenzmesser gemessen. Der Hohlleiter ist am Ende abgeschlossen,

bildet also eine stehende Welle aus. Mit Hilfe einer Pr�ufsonde wird nun die

Leistung der Hohlleiterstrahlung in Abh�angigkeit von der an der Skala abzu-

lesenden L�ange entlang des Hohlleiters vermessen. Der Hohlleiter besitzt eine

Innenausdehnung von 2� 1cm (genauer ist die doppelte Breite 44; 57mm), als

Frequenz kann 9116MHz abgelesen werden. Wir erhalten

- bei 118mm ein Maximum

- bei 105:5mm ein Minimum

- bei 93:5mm ein Maximum

- bei 81:5mm ein Minimum und

- bei 70mm ein Maximum der Leistung.

Der Abstand zwischen Maximum und Minimum der Leistung entspricht

einem Wert �=4. F�ur die Wellenl�ange erhalten wir daher im Mittel � = 48mm.

Auf Seiten der Theorie ergibt sich aus der Frequenz f�ur den Mode TM

10

ein

Wert �

10

= 47:7mm, was sehr nahe unserem Me�ergebnis ist.

1.5 Wellenausbreitung in Leitern

Wir haben in Abschnitt 1.3.2 den perfekten Leiter betrachtet. Reale Leiter las-

sen dagegen die elektromagnetische Strahlung in begrenztem Ma�e eindringen.

Es gilt f�ur sie das Ohmsche Gesetz , das in di�erentieller Form die Gestalt

~

j = � �

~

E (1:32)

besitzt. Setzt man dies in die Maxwellschen Gleichungen ein, so ergibt sich

div

~

E = 0; rot

~

E = �

@

~

B

@t

;

div

~

B = 0; rot

~

E = "

0

"�

0

�

@

~

E

@t

+ �

0

��

~

E

(1:33)
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und damit die Wellengleichung

�

~

E = "

0

"�

0

�

@

2

~

E

@t

2

+ �

0

��

@

~

E

@t

: (1:34)

Diese Gleichung beschreibt eine Wellenausbreitung mit D�ampfung. Wir besei-

tigen die Zeitabh�angigkeit zun�achst mit dem Ansatz

~

E(~r; t) =

~

E(~r )e

�i!t

und

erhalten

�

~

E(~r ) + ("

0

"�

0

�!

2

+ i�

0

��!)

~

E(~r ) = 0: (1:35)

Diese Gleichung wiederum wird mit dem Ansatz

~

E(~r ) =

~

E

0

e

i

~

k�~r

gel�ost und

liefert �

~

E(~r ) + k

2

~

E(~r ) = 0. Der Wellenvektor

~

k ist f�ur nichtverschwin-

dende Leitf�ahigkeit komplex. F�ur einen guten Leiter, der durch � � "

0

"!

gekennzeichnet ist, l�a�t sich gar der erste Anteil zu k

2

in Gleichung (1.35)

vernachl�assigen, es ergibt sich

k

2

= i�

0

��! = e

i�=2

�

0

��! )

~

k = �e

i�=4

~n

p

�

0

��! = �(1 + i)�~n

(� :=

p

�

0

��!=2), wobei ~n in Richtung der Wellenausbreitung zeigt. Dies in

den Ansatz eingesetzt, ergibt sich die L�osung

~

E(~r; t) =

~

E

0

exp(i

~

k � ~r � i!t) =

~

E

0

exp(�i(1 + i)�~n � ~r � i!t) =

=

~

E

0

exp(��~n � ~r) exp(�i�~n � ~r � i!t):

Der erste Exponentialfaktor beschreibt die D�ampfung, der zweite die Wellen-

ausbreitung mit der Charakteristik ��~n � ~r � !t. Es mag auf den ersten Blick

verwundern, da� in beiden F�allen der erste Faktor f�ur eine D�ampfung steht.

Beachtet man jedoch, da� die Charakteristik �~n � ~r �!t eine vorw�artslaufende

und die Charakteristik ��~n � ~r � !t eine r�uckw�artslaufende Welle beschreibt,

so f�allt die Welle im Leiter in eben dieser Richtung ab. Die Eindringtiefe � der

Strahlung, auch Skindicke (

"

Hautdicke\) genannt, ist

� =

1

�

=

r

2

�

0

��!

: (1:36)

Kupfer der Leitf�ahigkeit � = 5:9 � 10

7




�1

m

�1

ist selbst bis in h�ochste Fre-

quenzbereiche hinein als guter Leiter anzusehen. Mit �

0

= 4� � 10

�7

Vs=Am

und � � 5 ergibt sich

�

Cu

(100Hz) � 7mm; �

Cu

(100MHz) � 7�m:

Der Skine�ekt , also das Eindringen elektromagnetischer Strahlung in Leiter,

wird f�ur hohe Frequenzen geringer. In diesem Fall ist die Wellenausbreitung

also durch die Ober
�ache guter Leiter begrenzt. Daher gen�ugt ein Versilbern

der Ober
�achen, um ein Eindringen hochfrequenter elektromagnetischer Strah-

lung in zu sch�utzende Bereiche zu verhindern.
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2. Lichtoptik

Im vergangenen Kapitel haben wir die Ausbreitung von elektromagnetischen

Wellen in homogenen Medien betrachtet. Interessanter wird die Ausbreitung

allerdings, wenn diese Medien inhomogen sind, also beispielsweise Spr�unge in

der Dielektrizit�at oder Permeabilit�at aufweisen. In diesem Fall �andert sich die

Richtung der Ausbreitung an diesen Grenz
�achen. Die Ausbreitung der elek-

tromagnetischen Wellen setzen wir in diesem Kapitel mit dem anschaulichen

Begri� des Lichtes in Beziehung, wenngleich auch Radiowellen oder Strahlung

anderer, nicht sichtbarer Frequenzbereiche gemeint sein k�onnen.

2.1 Die Re
exions- und Brechungsgesetze

F�ur die Lichtausbreitung existieren zwei verschiedene Modelle. Zum einen exi-

stiert nat�urlich weiterhin das Modell der Welle, vornehmlich der ebenen Welle,

das diese Ausbreitung beschreibt. Zum anderen kann die Ausbreitung aber

auch mit dem Begri� des Lichtstrahls beschrieben werden. Dieser Lichtstrahl

steht in gleicher Richtung zum Wellenvektor senkrecht auf den Wellenfronten.

Und zu jedem dieser Bilder gibt es ein Prinzip, welches die Lichtausbreitung

beschreibt. Diese Prinzipien sollen den Anfang dieses Abschnitts bilden, bevor

die gemeinsamen Ergebnisse in Re
exions- und Brechungsgesetzen m�unden.

2.1.1 Huygenssches Prinzip

Das Huygenssche Prinzip, benannt nach den niederl�andischen Physiker und

Astronomen Christian Huygens (1629{1695), geht vom Wellencharakter des

Lichtes aus. Genauer beschreibt es die Ausbreitung einer ebenen Welle als

einen Proze�, in dem die einzelnen Punkte einer Wellenfront in jedem Mo-

ment im Medium Kugelwellen, die Huygensschen Elementarwellen, erzeugen,

die sich ausbreiten und schlie�lich zu der Wellenfront �uberlagern, wie sie eine

Zeitspanne sp�ater erscheint. In einem homogenen Medium ist die so erzeugte

Wellenfront parallel zur urspr�unglichen, da die Ausbreitungsgeschwindigkeit

aller Elementarwellen gleich ist, und damit die Ausbreitungsrichtung erhalten.

Das �andert sich, wenn die Homogenit�at nicht mehr gegeben ist.

In Abbildung 2.1 betrachten wir eine

ebene Welle, die mit einem Einfallwinkel

�

1

auf eine Grenz
�ache tri�t. Zum Zeit-

punkt t = 0 tre�e die Welle im Punkt A die

Grenz
�ache. Der Punkt B der Wellenfront

erreicht die Grenz
�ache im Punkt B

0

zu ei-

nem sp�ateren Zeitpunkt �t. Dieser steht

mit der Ausbreitungsgeschwindigkeit v

1

des

Lichtes im ersten Medium in Beziehung,

v

1

�t = d sin�

1

;

α
α

α α α 1
 1

 2

 2

 1  3

α
A’

B’

B

A

Abb. 2.1 Huygenssches Prinzip

wobei d die Entfernung zwischen A und B

0

sei. In dieser Zeit hat sich jedoch

vom Punkt A eine Elementarwelle gel�ost. Die Geschwindigkeit v

2

im zweiten
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Medium ist eine andere, daher legt sie in der Zeit �t die Strecke v

2

�t zur�uck.

Zusammen mit der gerade im Punkt B

0

erzeugten Elementarwelle und allen

anderen Elementarwellen zwischen diesen Punkten bildet sie eine ebene Welle

aus, und der Ausfallwinkel �

2

ist gegeben durch

d sin�

2

= v

2

�t:

Aus diesen beiden Gleichungen erh�alt man schlie�lich

sin�

1

sin�

2

=

v

1

v

2

:

Zugleich macht Abbildung 2.1 deutlich, da� von A aus eine Kugelwelle ins

bisherige Medium zur�uckl�auft. Diese hat dieselbe Geschwindigkeit wie bisher

und errichtet nach der Zeit �t auf der Grenz
�ache ein Dreieck desselben An-

stellwinkels. Daher wird in das selbe Medium eine ebene Welle ausgesandt,

deren Austrittswinkel gleich dem Eintrittswinkel ist, �

3

= �

1

. Die beiden hier

beschriebenen Ph�anomene sind bestens bekannt als Brechung und Re
exion.

2.1.2 Fermatsches Prinzip

Das Fermatsche Prinzip (Pierre de Fermat, 1601{1665, frz. Mathematiker) be-

nutzt das Bild des Lichtstrahles und stellt die Behauptung auf, da� sich dieser

Lichtstrahl stets den Weg w�ahlt, auf dem er die k�urzeste Zeit braucht. Ist das

in�nitesimale Wegelement durch ds und das ininitesimale Zeitintervall durch

dt gegeben, so stehen beide �uber ds = v dt in Beziehung. Zu Minimieren ist

also die Gesamtzeit

Z

t(P

2

)

t(P

1

)

dt =

Z

P

2

P

1

ds

v

:

Unter der Annahme, da� sich ansonsten das Licht geradlinig ausbreitet, ver-

einfachen wir das ansonsten recht komplizierte Variationsprinzip durch die

Einf�uhrung eines einzigen Parameters.

Die Grenz
�ache sei in beiden F�allen

durch die x-Achse geben, wie in Abbil-

dung 2.2 gezeigt. Wir beginnen hier mit der

Re
exion und betrachten einen Lichtstrahl,

der von einem Punkt P

1

= (x

1

; y) zu einem

Punkt P

2

= (x

2

; y) gelangen soll, wobei er

die Grenz
�ache in einem Punkt P

0

= (x; 0)

ber�uhre. x ist der eingef�uhrte Parameter,

bez�uglich dessen das Integral zu minimie-

ren ist. Dieses Integral ist hier sofort aus-

zuf�uhren, da die Geschwindigkeit konstant

ist,

y

x x1 2

-y

P P

P

21

3

P

P

0

0

Abb. 2.2 Fermatsches Prinzip

v

Z

P

2

P

1

ds

v

= s(P

1

; P

0

) + s(P

0

; P

2

) =

p

(x � x

1

)

2

+ y

2

+

p

(x

2

� x)

2

+ y

2

:
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Diese Funktion nimmt ihr Minimum f�ur x = (x

1

+ x

2

)=2, also genau zwischen

den Projektionen der beiden Punkte an. Damit ist klar, da� der Einfall- gleich

dem Ausfallwinkel ist.

F�ur den

�

Ubergang in ein anderes Medium w�ahlen wir einen Punkt P

3

=

(x

2

;�y) und lassen das Licht erneut bei P

1

starten und bei P

0

die Grenz
�ache

tre�en. Dieser Punkt wird nun nat�urlich ein anderer sein. Das Integral l�a�t

sich hier in zwei Anteile zerlegen,

Z

P

2

P

1

ds

v

=

s(P

1

; P

0

)

v

1

+

s(P

0

; P

2

)

v

2

=

1

v

1

p

(x � x

1

)

2

+ y

2

+

1

v

2

p

(x

2

� x)

2

+ y

2

:

Dieser Ausdruck ergibt, abgeleitet nach x, die Forderung

x � x

1

v

1

p

(x � x

1

)

2

+ y

2

=

x

2

� x

v

2

p

(x

2

� x)

2

+ y

2

;

f�ur die Minimalit�at, was nichts anderes als sin�

1

=v

1

= sin�

2

=v

2

ist. Damit

haben wir auch hier ein zum Resultat des ersten Prinzipes identisches Ge-

setz hergeleitet. Das Fermatsche Prinzip l�a�t sich �ubrigens auf komplizierte

Anordnungen als ganze anwenden, was beim Huygensschen Prinzip zumindest

schwierig w�are.

2.1.3 Snelliussches Brechungsgesetz

Wir haben sowohl �uber das Hygenssche als auch �uber das Fermatsche Prin-

zip eine Beziehung zwischen Ein- und Ausfallwinkel erhalten. F�ur die Re
e-

xion ist diese einfach die Tatsache, da� der Einfall- gleich dem Ausfallwinkel

ist. F�ur die Brechung kommt die Ausbreitungsgeschwindigkeit des Lichtes in

den verschiedenen Medien mit ins Spiel. Um hier statt den unanschaulichen

Geschwindigkeiten eine dimensionslose Gr�o�e zu haben, die zudem noch sinn-

voll normiert ist, f�uhren wir den Brechungsindex n = c=v ein, der angibt,

um welchen Faktor die Wellengeschwindigkeit im Medium kleiner ist als die

Lichtgeschwindigkeit im Vakuum. Mit diesem Brechungsindex k�onnen wir das

Snelliussche Brechungsgesetz

n � sin� = konstant (2:1)

aufstellen.

�

Ubrigens wurde dieses Gesetz erst posthum im Nachla� des nie-

derl�andischen Mathematikers Willebrord van Royen Snell (1580{1621) ent-

deckt. Es bildet die Grundlage der Refrakt�aroptik, also des Zweiges der Op-

tik, der sich mit der Lichtbrechung befa�t. Es gilt strenggenommen nur f�ur

ebene Grenz
�achen. Doch kann man die meisten in der Praxis vorkommenden

Grenz
�achen wie die Ober
�achen von Linsen als lokal hinreichend eben anse-

hen, so da� dieses Gesetz zur Geltung kommen kann. Wir machen davon im

kommenden Abschnitt bereits Gebrauch und verabschieden uns mit der dort

betrachteten Polarisation zugleich endg�ultig vom explizit elektromagnetischen

Charakter des Lichtes.
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2.2 Polarisation und Totalre
exion

Zun�achst stellt sich wieder einmal die Frage, was die Stetigkeitsbedingungen f�ur

das elektrische und magnetische Feld beim

�

Ubergang durch eine Grenz
�ache

sind. Diese Grenz
�ache ist hier ein Nichtleiter, der weder freie Ladungen noch

Str�ome aufweist. Es gelten daher die quellenfreien Maxwellschen Gleichungen

div

~

D = 0; rot

~

E = �

@

~

B

@t

;

div

~

B = 0; rot

~

H =

@

~

D

@t

:

(2:2)

Legen wir, wie bereits mehrfach praktiziert,* in Gedanken eine 
ache Dose

in die Grenz
�ache, so ergeben die beiden linken Gleichungen, da� die Nor-

malkomponenten der Felder

~

D und

~

B beim Durchgang durch die Grenz
�ache

stetig sind. Der 
ache Rechteckweg durch die Grenz
�ache hingegen liefert mit

den beiden rechten Gleichungen die Stetigkeit der Tangentialkomponenten von

~

H und

~

E. Als zus�atzliche Vereinfachung sei die Dielektrizit�at " der aneinan-

dersto�enden Medien zeitlich und r�aumlich konstant, die Permeabilit�at � = 1.

Dann gilt

"

1

~

E

?1

= "

2

~

E

?2

;

~

E

k1

=

~

E

k2

;

~

B

?1

=

~

B

?2

und

~

B

k1

=

~

B

k2

:

Das magnetische Feld geht also stetig durch die Grenz
�ache. Es ist �uber die

Maxwellschen Gleichungen mit dem elektrischen Feld gekoppelt, auf das im

folgenden die Betrachtungen zur�uckgef�uhrt werden sollen.

2.2.1 Die Fresnelschen Formeln

Das elektromagnetische Feld im Nichtleiter steht senkrecht auf der Ausbrei-

tungsrichtung, welche anschaulich durch die Richtung des Lichtstrahls gegeben

ist. Die relative Orientierung zwischen einfallendem (a), gebrochenem (b) und

re
ektiertem Strahl (r) ist durch das Snelliussche Brechungsgesetz bzw. das

Re
exionsgesetz gegeben. Alle drei Strahlen liegen in einer Ebene senkrecht

zur Grenzschicht, die nat�urlich f�ur senkrechten Einfall nicht eindeutig ist.

Um die eben aufgestellten Grenzbe-

dingungen anwenden zu k�onnen, zerlegen

wir das elektrische Feld f�ur jeden dieser

drei Strahlen in eine Normalkomponente

E

N

senkrecht zu dieser Ebene und eine

Transversalkomponente E

T

, die in dieser

Ebene senkrecht zur Ausbreitungsrichtung

weist. Wellenvektor, Transversal- und Nor-

malkomponente sollen in dieser Reihenfolge

ein Rechtssystem bilden, die Situation ist in

Abbildung 2.3 dargestellt. Es ergibt sich

α

α

 1

 2

α 1k

kE

E

E
E

a

r

 r

 r

 b
 b

E a

E a
 N

 N

 T  T

 T

 N

bk

Abb. 2.3 Polarisationsbeziehungen

* vgl. dazu Abschnitt 1.3.2.
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E

N

a

+E

N

r

= E

N

b

und E

T

a

cos�

1

�E

T

r

cos�

1

= E

T

b

cos�

2

(2:3)

f�ur die Anteile parallel zur Grenz
�ache und

"

1

(E

T

a

sin�

1

+E

T

r

sin�

1

) = "

2

E

T

b

sin�

2

(2:4)

f�ur denjenigen senkrecht dazu. Verwendet man noch

n

1

n

2

=

p

"

1

p

"

2

=

v

2

v

1

=

sin�

2

sin�

1

; (2:5)

so ergibt sich

E

N

a

+E

N

r

= E

N

b

; (E

T

a

�E

T

r

) cos�

1

= E

T

b

cos�

2

;

(E

T

a

+E

T

r

) sin�

2

= E

T

b

sin�

1

: (2:6)

Diese drei Gleichungen sind zun�achst einmal vom Ort und von zwei der drei

Ortskoordinaten (beispielsweise x und y) abh�angig, wobei die dritte (also z)

durch die Grenz
�ache als z = 0 festgelegt ist. Diese Abh�angigkeit ist aber nur

eine station�are, und verwenden wir den komplexen Ansatz

~

E

i

=

~

E

0

i

exp(i(!

i

t� k

i

x

x� k

i

y

y)); i 2 fa; b; rg

so ergibt sich, da die Gleichungen an allen Punkten der Grenz
�ache und zu

allen Zeiten erf�ullt sein soll, die Gleichheit der entsprechenden Kreisfrequenzen

und Wellenvektorkomponenten,

!

a

= !

b

= !

r

= !; k

a

x

= k

b

x

= k

r

x

= k

x

und k

a

y

= k

b

y

= k

r

y

= k

y

(2:7)

(jedoch nicht f�ur die Komponenten k

i

z

). Die Gleichungen (2.6) behalten dabei

dieselbe Form, egal ob dabei die orts- und zeitabh�angigen Feldkomponenten

oder deren Amplituden gemeint sind. Wir wollen im folgenden letzteres anneh-

men. Zu den

�

Ubergangsgleichungen f�ur das elektrische Feld treten diejenigen

f�ur das magnetische Feld,

B

N

a

+B

N

r

= B

N

b

; (B

T

a

�B

T

r

) cos�

1

= B

T

b

cos�

2

(B

T

a

+B

T

r

) sin�

1

= B

T

b

sin�

2

(2:8)

(man beachte den formalen Unterschied der jeweils letzten Gleichungen in (2.6)

und (2.8)). Dabei seien die gleichen Konventionen wie in Abbildung 2.3 ge-

tro�en. Diese Gleichungen f�ur das magnetische Feld lassen sich auf das elek-

trische Feld �ubertragen, denn aus der homogenen Maxwellschen Gleichung

rot

~

E = �@

~

B=@t ergibt sich f�ur die Amplituden (i 2 fa; b; rg)

~

k �

~

E = �!

~

B ) k

i

E

N

i

= !B

T

i

und k

i

E

T

i

= �!B

N

i

; (2:9)
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und �uber ! = k

1

v

1

sowie mit Hilfe der Beziehung (2.5)

(E

T

a

+E

T

r

) sin�

2

= E

T

b

sin�

1

; (2:10)

(E

N

a

�E

N

r

) tan�

2

= E

N

b

tan�

1

; E

N

a

+E

N

r

= E

N

b

:

Zwei der sechs Gleichungen aus (2.6) und (2.10) sind redundant, die anderen

reichen aber aus, um die Feldkomponenten des re
ektierten und gebrochenen

Strahls in Abh�angigkeit derjenigen des einfallenden Strahls zu bestimmen. Tri-

gonometrische Umformungen f�uhren auf

E

T

b

=

2 sin�

2

cos�

1

sin(�

1

+ �

2

) cos(�

1

� �

2

)

E
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a

; E

T
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� �
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)
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1

+ �

2

)

E
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a
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E

N

b

=

2 sin�

2
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1
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1

+ �

2

)

E

N

a

; E

N

r

= �

sin(�

1

� �

2

)

sin(�

1

+ �

2

)

E

N

a

:

(2:11)

Diese Formeln sind als Fresnelsche Formeln bekannt (Augustin Jean Fresnel,

frz. Physiker, 1788{1827). Sie kennzeichnen das Re
exionsverm�ogen r und die

Durchl�assigkeit d gem�a�

r =

j

~

S

r

j

j

~

S

a

j

=

j

~

E

r

j

2

j

~

E

a

j

2

; d =

j

~

S

b

j

j

~

S

a

j

=

j

~

E

b

j

2

j

~

E

a

j

2

: (2:12)

2.2.2 Der Brewsterwinkel

Die Fresnelschen Formeln weisen eine Besonderheit auf, die hier genauer be-

trachtet werden soll. Da die Winkel �

1

und �

2

�uber das Snelliussche Brechungs-

gesetz miteinander verbunden sind, ist der Proportionalit�atsfaktor zwischen

den Feldkomponenten eigentlich nur eine Funktion eines der beiden Winkel,

beispielsweise des Einfallwinkels. Tr�agt man nun das Re
exionsverm�ogen eines

parallel zur Grenz
�ache polarisierten Strahls gegen diesen Winkel auf, so �n-

det sich ein Wert, bei dem dieses Re
exionsverm�ogen verschwindet, also kein

Strahl re
ektiert wird. Entsprechend

"

�uberlebt\ bei diesemWinkel nur die Po-

larisationsrichtung in der zur Grenz
�ache senkrechten Ebene. Dies �ndet sich

auch in den Fresnelschen Formeln wieder. Es ist der Fall �

1

+ �

2

= 90

0

, bei

dem der Tangens unendlich, sein Kehrwert aber zu Null wird. Und es ist wegen

�

1

6= �

2

auch die einzige Stelle, an der einer dieser Koe�zienten verschwindet.

�

1

+ �

2

= 90

0

hei�t, da� re
ektierter und gebrochener Strahl aufeinander

senkrecht stehen. Der Wert f�ur den Winkel �

1

wird als nach dem englischen

Physiker Sir David Brewster (1781{1868) als Brewsterwinkel bezeichnet und

ergibt sich aus

n

2

n

1

=

sin�

1

sin�

2

=

sin�

1

sin(90

0

� �

1

)

=

sin�

1

cos�

1

= tan�

1

: (2:13)

F�ur n

1

= 1 und n

2

= 1:5 erh�alt man �

1

� 56

0

, der Winkel n�ahert sich f�ur kleine

Unterschiede im Brechungsindex dem Wert 45

0

. Licht, das mit dem Brewster-

winkel auf eine entsprechende Grenz
�ache f�allt, l�a�t sich polarisieren. Dies
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kommt auch in der Natur beim Auftre�en von Sonnenlicht auf unterschied-

lich dichte Luftschichten vor. Das senkrecht zur Sonnenstrahlung re
ektierte

Licht ist polarisiert, und Bienen k�onnen dieses wahrnehmen. Die entsprechen-

den Punkte am Himmel werden Aragoscher und Babinetscher Punkt genannt

(Dominique Fran�cois Arago (1786{1853) und Jacques Babinet (1794{1872),

franz�osische Physiker).

Abbildung 2.4 zeigt einen Versuch zum

Brewsterwinkel, und in der folgenden Ta-

belle sind Brewsterwinkel �

B

f�ur einige Ma-

terialien aufgef�uhrt, f�ur die beiden ersten im

sichtbaren, f�ur die letzten beiden im Infra-

rotbereich des Spektrums.

Sto� n �

B

Wasser 1:33 53

0

Schwer
int 1:75 60

0

Schwefel 2:0 67

0

Selen 2:4 67

0

Tab. 2.1 Brewsterwinkel f�ur verschiedene Materialien

polarisiert

reflektiert

transmittiert

Abb. 2.4 Versuch zum Brewsterwinkel

2.2.3 Senkrechter Einfall

Aus den Fresnelschen Formeln ergibt sich im Grenzfall �

1

! 0 und damit

n

1

�

1

� n

2

�

2

recht schnell das Re
exionsverm�ogen und die Durchl�assigkeit, die

hier f�ur beide Polarisationsrichtungen jeweils gleich sind,

r =

(n

2

� n

1

)

2

(n

2

+ n

1

)

2

; d =

(2n

1

)

2

(n

2

+ n

1

)

2

: (2:14)

F�ur den

�

Ubergang von Glas zu Luft (wie auch im umgekehrten Fall) ist das

Re
exionsverm�ogen sehr klein, r � 0:04. An den beiden Grenz
�achen einer

Glasscheibe zusammen wird also nur 8% des einfallenden Lichtes re
ektiert.

2.2.4 Totalre
exion

F�ur den

�

Ubergang vom dichteren zum d�unneren Medium erh�alt man einen

weiteren E�ekt. Ist n

1

> n

2

, so ergibt das Snelliussche Brechungsgesetz einen

Maximalwinkel �

max

1

mit

sin(�

max

1

) =

n

2

n

1

; (2:15)

bei dem sin�

2

= 1 wird und oberhalb dessen ein gebrochener Strahl nicht

mehr existiert. Wir sprechen von der Totalre
exion, der Grenzwinkel ist f�ur

den

�

Ubergang von Glas zu Luft 42

0

. Dennoch ist auch f�ur gr�o�ere Winkel in

der N�ahe des

�

Ubertrittspunktes noch ein elektromagnetisches Feld vorhanden,

das allerdings exponentiell abf�allt. Setzen wir die Aufspaltung

k

x

= j

~

k j sin�

2

; k

z

= j

~

k j cos�

2

= j

~

k j

q

1� sin

2

�

2

; j

~

k j =

!

v

2
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zu Werten sin�

2

> 1 hin fort, so ergibt sich eine rein imagin�are Wellenvektor-

komponente k

z

und damit aus dem station�aren Ansatz

~

E

b

=

~

E

0

b

exp(i(!t � k

b

x

x� k

b

z

z)) =

~

E

0

b

exp(i(!t� k

b

x

x)) exp(�z=L);

wobei

L =

v

2

!

p

sin

2

�

2

� 1

=

n

2

�

2

2�

q

(n

1

)

2

sin

2

�

1

� (n

2

)

2

(2:16)

die Eindringtiefe zur Wellenl�ange �

2

des Lichtes im d�unneren Medium ist. Da�

ein solches exponentiell abfallendes Feld existiert, zeigt sich, wenn man dicht

neben die total re
ektierende Glasplatte eine zweite legt. Der (abgeschw�achte)

Strahl setzt sich in dieser Platte in derselben Richtung fort. Es handelt sich

hierbei um die optische Auspr�agung des Tunnele�ekts der Quantenmechanik.

900

Abb. 2.5 Brewsterwinkel (links), Totalre
exion und Tunnele�ekt

2.2.5 Linear- und Zirkularpolarisation

Polarisiertes Licht, wie es im Brewsterschen Experiment erzeugt wurde, beh�alt

seine Polarisationsebene bei. Das liegt daran, da� die beiden Feldkomponenten

senkrecht zur Ausbreitungsrichtung in Phase sind, wobei die beiden Amplitu-

den lediglich kennzeichnen, wie die Polarisationsebene relativ zu den Achsen

liegt. Licht dieser Art hei�t linear polarisiert. Ist jedoch eine der beiden Kom-

ponenten gegen die andere um eine Phase �=2 verschoben, so bewegt sich der

Polarisationsvektor auf einer Helixbahn, wir sprechen von zirkular polarisier-

tem Licht. So steht in

~

E = E

0

�

~e

x

cos(kz � !t) + ~e

y

cos(kz � !t� �=2)

�

Das

"

+\ f�ur rechtszirkulares und das

"

�\ f�ur linkszirkulares Licht. Phasen-

spr�unge k�onnen an bedampften Gl�asern auftreten. Eine �=2-Platte besitzt eine

Achse, in deren Richtung ein Phasensprung von �=2 (daher der Name) auftritt,

also besitzen zwei Komponenten, die vorher in Phase waren, danach eine Pha-

sendi�erenz von �. Die Polarisationsebene von linear polarisiertem Licht wird

so um 90

0

gedreht. Bei einer �=4-Platte entsteht nur eine Phasendi�erenz von

�=2, linear polarisiertes Licht verwandelt sich in zirkular polarisiertes.
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2.2.6 Doppelbrechung

Doppelbrechung entsteht in Kristallen, die je nach Lichtausbreitung einen un-

terschiedlichen Brechungsindex besitzen, also ein anisotropes Brechungsverhal-

ten ausweisen. In der Natur kommt dies beispielsweise beim Kalkspat (CaCO

3

)

vor. Aber auch isotrope Materialien wie Plexiglas lassen sich durch �au�ere

Ein
�usse (wie Druck, Biegung, ein Temperaturgradient oder elektrische Felder)

anisotrop machen. Dies wird umgekehrt in der Materialpr�ufung verwendet, um

Spannungen sichtbar zu machen. Diese Anisotropie ist anh�angig von der Po-

larisationsrichtung des Lichtes. So ist f�ur die eine Polarisationsrichtung eine

Isotropie des Brechungsindex vorhanden, w�ahrend sie f�ur die dazu senkrechte

davon abweicht. Das Licht setzt sich, wie noch zu zeigen sein wird, entspre-

chend in zwei linear polarisierten Strahlen fort, wobei ersterer als ordentlicher

(o), letzterer als au�erordentlicher Strahl (e) bezeichnet wird.

Entlang der optischen Achse sind beide Brechnungsindizes gleich, dort

�ndet keine Aufspaltung des Strahls statt. Die gr�o�te Abweichung ergibt sich

dagegen senkrecht zu dieser Achse. Ist n

o

der Brechungsindex f�ur den ordent-

lichen Strahl und v

o

die zugeh�orige Ausbreitungsgeschwindigkeit, so ver�andert

sich die Ausbreitungsgeschwindigkeit v

e

f�ur den au�erordentlichen Strahl von

v

o

entlang der optischen Achse in v

�

e

entlang einer Richtung senkrecht dazu.

F�ur v

�

e

< v

o

sprechen wir von einem positiv doppelbrechenden, f�ur v

�

e

> v

o

von

einem negativ doppelbrechenden Kristall.

Vielleicht wird das Verhalten am deut-

lichsten, wenn man sich die Lichtausbrei-

tung wie im Huygensschen Prinzip wie-

der aus Elementarwellen zusammengesetzt

denkt. F�ur den ordentlichen Strahl sind dies

Kugelwellen, f�ur den au�erordentlichen da-

gegen Ellipsoide mit der optischen Achse als

Symmetrieachse. Abbildung 2.6 zeigt das

Konstruktionsprinzip f�ur die beiden Strahl-

richtungen.

eo o e

optische Achse

Abb. 2.6 Prinzip der Doppelbrechung

Ein Kalkspatkristall ist wie ein Parallelotop gebaut. Daher ergibt sich

beim Austritt aus dem Kristall der umgekehrte Vorgang. Die beiden Strahlen

treten also parallel, aber versetzt aus dem Kristall aus. Dies ist auch der Grund,

warum ein doppelbrechender Kristall zwei je nach Blickrichtung gegeneinander

verschobene Kopien der Unterlage erkennen l�a�t, auf der er liegt.

Es gibt, das sei hier nur kurz angesprochen, dar�uber hinaus noch Pola-

risationse�ekte bei einigen chemischen Verbindungen. So besitzen spezielle

Fruchtzuckerarten ein unterschiedliches Brechungsverhalten, je nachdem, ob

das einfallende Licht rechts- oder linkszirkular polarisiert ist.
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2.3 Geometrische Optik

Die geometrische Optik verwendet f�ur die

Lichtausbreitung das Bild des Lichtstrahls.

Dieser wird an Grenz
�achen gespiegelt und

gebrochen und durchquert den homogenen

Raum zwischen den Grenz
�achen geradli-

nig. Ein Beispiel f�ur einen nichthomoge-

nen Raum sei an dieser Stelle als Versuch

anbei gestellt: Die Ausbreitung eines Laser-

strahls in einer Kochsalzl�osung, die nach un-

ten hin dichter wird. Bei �ortlich variablem

Brechungsindex erkennt man deutlich einen

gekr�ummten Lichtstrahl.

Laser

Abb. 2.7

�

Ortlich variabler Brechungsindex

2.3.1 Der Hohlspiegel

Die geometrische Optik einer spiegelnden Fl�ache ist am einfachsten zu behan-

deln, mu� hier doch nur ber�ucksichtigt werden, da� Ein- und Ausfallwinkel

denselben Wert besitzen. Anhand von Abbildung 2.8 (links) sollen zun�achst

die wichtigsten Bezugspunkte bei der Re
exion an einem sph�arischen Hohlspie-

gel betrachtet werden. Da ist zun�achst einmal der Mittelpunkt M der Kugel-

schale. Durch ihn verl�auft die Hauptachse, und dort, wo sie den Spiegel tri�t,

�ndet sich der Scheitelpunkt S. Ein zur Hauptachse paralleler Strahl tre�e

den Spiegel im Auftre�punkt A. Nach der Re
exion kreuzt er die Hauptachse

im Brennpunkt oder Fokus F . Die Brennweite f schlie�lich ist der Abstand

zwischen Scheitel- und Brennpunkt.

r

f

rh

M F

A

S

Hauptachse

α
α

α α
α

β
MG B F

A

g
b

S

Abb. 2.8 Re
exion eines Parallelstrahls (links) und eines Punktstrahls (rechts). In der Mitte ist

die Katakaustik f�ur einen sph�arischen Hohlspiegel dargestellt

Wir betrachten den Parallelstrahl und seine Re
exion, wie sie in Abbildung 2.8

links dargestellt sind, um eine Beziehung zwischen Radius r (also dem Abstand

zwischen M und S bzw. A) und der Brennweite herzustellen. Aus trigonome-

trischen

�

Uberlegungen folgt, da sich der Winkel � sowohl im Winkel MAF als

auch in AMF wieder�ndet, die Gleichschenkligkeit des Dreiecks AMF . Es ist

dann

MF = FA =

MA

2 cos�

=

r

2 cos�

und h = r sin�:
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F�ur paraxiale Strahlen, also solche nahe der Hauptachse, ist h� r und damit �

klein. Die N�aherung cos� � 1 gen�ugt f�ur diese Zwecke, man erh�altMF = r=2

und damit

f = FS = r �MF =

r

2

: (2:17)

F�ur achsenferne Strahlen dagegen erh�alt man die sph�arische Aberration, die

sich dadurch bemerkbar macht, da� sich Parallelstrahlen nach der Re
exion

nicht im Brennpunkt sammeln, sondern n�aher zum Scheitelpunkt r�ucken, je

achsenferner der Parallelstrahl ist. Die Einh�ullende dieser Strahlenschar, die

bei einem Strahlenb�undel sichtbar wird, wird als Katakaustik bezeichnet. Sie

ist in Abbildung 2.8 in der Mitte dargestellt. Die sph�arische Aberration l�a�t

sich vermeiden, wenn man statt des sph�arischen einen parabolischen Spiegel

verwendet.

Wo tri�t ein von einem Punkt der Gegenstandsebene, dem Gegenstands-

punkt G ausgehender Strahl nach der Re
exion die optische Achse? Um dieser

Frage nachzugehen, betrachten wir den rechten Teil der Abbildung 2.8. Der

betre�ende Punkt, welcher die Bildebene markiert, sei mit B bezeichnet. Dann

ergibt sich aus dem Sinussatz, angewendet auf die Dreiecke GAM bzw. BAM

MG

AG

=

j sin�j

j sin(� � �)j

=

sin�

sin�

=

MB

AB

:

Betrachten wir erneut paraxiale Strahlen, so ist AG � SG = g die Gegen-

standsweite und AB � SB = b die Bildweite, beide vom Scheitelpunkt aus

gemessen. Folglich ist mit f = r=2

g � r

g

=

r � b

b

,

1

g

+

1

b

=

1

f

: (2:18)

Diese Gleichung ist dieAbbildungsgleichung,

eine der Grundgleichungen der geometri-

schen Optik, die auch sp�ater bei der Lin-

senbrechung zum Tragen kommt. Verwen-

det man die Gr�o�en

x := g � f und x

0

:= b � f;

so ergibt sich eine andere Form, die auf Isaac

Newton zur�uckgeht und in manchen F�allen

praktischer ist,

xx

0

= f

2

: (2:19)

M F
Brennstrahl

Mittelpunktstrahl

Scheitelstrahl

Parallelstrahl

Abb. 2.9 Konstruktion des Bildes
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Die Konstruktion des Bildes eines Gegenstandes, welcher sich �uber die

Hauptachse erhebt, l�a�t sich geometrisch mit Hilfe der folgenden vier Strahlen

und ihrer Re
exionswege vollziehen:

- der Parallelstrahl geht nachher durch den Brennpunkt

- der Mittelpunktstrahl l�auft denselben Weg zur�uck

- der Brennstrahl verl�a�t den Spiegel parallel, und

- der Scheitelstrahl verl�auft symmetrisch zur Hauptachse.

Gegenstandsweite Bildweite Vergr�o�erung

1 > x > f (1 > g > 2f) 0 < x

0

< f (f < b < 2f) 0 > v > �1

x = f (g = 2f) x

0

= f (b = 2f) v = �1

f > x > 0 (2f > g > f) f < x

0

<1 (2f < b <1) �1 > v > �1

0 > x > �f (f > g > 0) �1 < x

0

< �f (�1 < b < 0) 1 > v > 1

Tab. 2.2 Beziehung zwischen Gegenstandsweite, Bildweite und Vergr�o�erung

Mit Hilfe dreier der vier Strahlen (eigentlich gen�ugen nur zwei) ist die Kon-

struktion des Bildes in Abbildung 2.9 durchgef�uhrt. Als Gegenstand h�alt ein

einfacher Pfeil her, zu dessen Spitze G

0

der Bildpunkt B

0

konstruiert wird. Die

Lateralvergr�o�erung, also die Vergr�o�erung bez�uglich der H�ohe des Gegenstan-

des, ist

v = �

BB

0

GG

0

= �

b

g

= �

f

g � f

= �

f

x

; (2:20)

wobei zur ersten Gleichheit der Strahlensatz f�ur den Scheitelstrahl, f�ur die

zweite Gleichheit die Abbildungsgleichung in der Form b = gf=(g � f) und

zur dritten Gleichheit die Newtonsche Schreibweise verwendet wurde. Aus

den Gleichungen (2.19) und (2.20) ergibt sich die obenstehende Tabelle 2.2,

wobei die F�alle (bis auf den zum ersten symmetrischen dritten Fall) auch in

Abbildung 2.10 geometrisch dargestellt sind. Die ersten drei F�alle liefern ein

reelles, auf dem Kopf stehendes Bild, also eines, welches sich vor dem Spiegel

wieder�ndet. Der letzte Fall ergibt ein virtuelles, aufrecht stehendes Bild, das

sich aus der Verl�angerung der Strahlen hinter den Spiegel ergibt.

M F S M S F SMF

Abb. 2.10 Bildkonstruktion f�ur g > 2f (links), g = 2f (Mitte) und g < f (rechts)
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2.3.2 Die Linse

Auch f�ur die optische Linse gehen wir von

einer sph�arischen Ober
�ache aus, welche

von paraxialen Strahlen getro�en wird. Zu

Beginn steht jedoch eine rein geometrische

Vor�uberlegung, welche die Abweichung der

Hypothenuse von der Ankathete bei kleinen

�

O�nungswinkeln bestimmt.

s

d

h

Abb. 2.11 geometrische Vor�uberlegung

In Abbildung 2.11 ist nach dem Satz des Pythagoras

h

2

= s

2

� d

2

= (s � d)(s + d)

und damit f�ur h� s

s� d =

h

2

s + d

�

h

2

2s

:

Eine einfache Linse setzt sich aus zwei sph�arischen Ober
�achen zusammen.

Doch bevor wir eine solche Linse konstruieren, bestimmen wir das optische

Verhalten einer sph�arischen Ober
�ache selbst. Dazu betrachten wir die Situa-

tion, die in Abbildung 2.12 dargestellt ist, f�ur paraxiale Strahlen.

G G’MS B

A

s s’

r
h

Brechungsindex
Bereich mit Bereich mit

Brechungsindexn n1 2

Abb. 2.12 Brechungsverhalten einer konvexen sph�arischen Ober
�ache

Ist s = GA, s

0

= AG

0

, h = AB und r =MA =MS der Radius der Sph�are, so

ergibt sich nach den eben angestellten geometrischen

�

Uberlegungen zun�achst

GA = GB +

h

2

2s

; AG

0

= BG

0

+

h

2

2s

0

sowie SG

0

= BG

0

+

h

2

2r

:

Um nun eine Beziehung zwischen den auftretenden L�angen, also vor allem

zwischen s und s

0

zu erhalten, benutzen wir das Fermatsche Prinzip. Diesem

Prinzip nach mu� das Licht f�ur den Weg GAG

0

dieselbe Zeit ben�otigen wie

f�ur GBG

0

. Besitzt der Brechungsindex links der sph�arischen Grenz
�ache in

Abbildung 2.12 denWert n

1

und rechts davon n

2

, so ist das Fermatsche Prinzip,

in Formeln gefa�t,

n

1

GA + n

2

AG

0

= n

1

GS + n

2

SG

0

= n

1

(GB +BG

0

� SG

0

) + n

2

SG

0

, n

1

�

GB +

h

2

2s

�

+ n

2

�

BG

0

+

h

2

2s

�

= n

1

�

GB �

h

2

2r

�

+ n

2

�

BG

0

+

h

2

2r

�
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, n

1

h

2

2s

+ n

2

h

2

2s

0

= �n

1

h

2

2r

+ n

2

h

2

2r

,

n

1

s

+

n

2

s

0

=

(n

2

� n

1

)

r

: (2:21)

Da s und s

0

f�ur paraxiale Strahlen mit der Gegenstands- und Bildweite iden-

tisch sind, kann die rechte Seite so etwas wie eine inverse Brennweite sein.

Doch bevor wir nun auch das Brechungsverhalten einer Linse mit zwei solchen

sph�arischenOber
�achen bestimmen, bauen wir sie besser aus diesen beiden Ele-

menten auf und benutzen dazu ein Schema, das auch im weiteren sehr n�utzlich

sein wird, das Schema der Matrixschreibweise einer Abbildung.

2.3.3 Matrixschreibweise der Abbildung

Der ein- und ausgehende Strahl in Abbildung 2.12 sind �uber die Relation (2.21)

aneinander gekoppelt. Die Strahlen werden durch die Geraden

y

1

(z) = h+

hz

s

und y

2

(z) = h�

hz

s

0

miteinander in Beziehung gesetzt, wobei der Ursprung z = 0 auf die Grenz
�ache

gesetzt wird (alles nat�urlich f�ur paraxiale Strahlen, f�ur welche die Punkte B

und S �uber diesem Ursprung zu liegen kommen). Am Ursprung ergibt sich

einerseits klarerweise y

1

(0) = y

2

(0), andererseits aber f�ur die Steigungen

n

2

y

0

2

(0) = �n

1

h

s

0

= �

h(n

2

� n

1

)

r

+ n

1

h

s

= (n

1

� n

2

)

y

1

r

+ n

1

y

0

1

(0):

In Matrixform geschrieben, lauten diese beiden Gleichungen

�

y

2

(0)

y

0

2

(0)

�

=

�

1 0

(n

1

� n

2

)=n

1

r n

1

=n

2

��

y

1

(0)

y

0

1

(0)

�

: (2:22)

Wird eine zweite Grenz
�ache hinter die erste gesetzt, so sind Achsenabstand

und Steigung erneut durch eine solche Matrix beschreibbar. Das Hinterein-

anderlegen der Ober
�achen entspricht daher der Matrixmultiplikation. Dies

werden wir gleich sehen. Ist die zweite Grenz
�ache eine nach rechts gew�olbte

Sph�are mit gleichem Kr�ummungsradius, die vom Medium mit Brechungsindex

n

2

zur�uck in das Medium mit Brechungsindex n

1

zur�uckf�uhrt, so ergibt sich die

entsprechende Abbildungsgleichung aus der ersten formal durch Vertauschung

von n

1

und n

2

und Ersetzung von r durch �r. Die Brennweite bleibt also

dieselbe, was auch anschaulich klar ist. Wir erhalten

�

y

3

(0)

y

0

3

(0)

�

=

�

1 0

(n

1

� n

2

)=n

2

r n

2

=n

1

��

y

2

(0)

y

0

2

(0)

�

=

=

�

1 0

(n

2

� n

1

)=n

2

r n

2

=n

1

��

1 0

(n

2

� n

1

)=n

1

r n

1

=n

2

��

y

1

(0)

y

0

1

(0)

�

=

=

�

1 0

2(n

1

� n

2

)=n

1

r 1

��

y

1

(0)

y

0

1

(0)

�

=:

�

1 0

�1=f 1

��

y

1

(0)

y

0

1

(0)

�

:
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f ist nun in der Tat die Brennweite dieser als 
ach angenommenen Linse,

denn aus der Beziehung zwischen den Geradensteigungen im Medium mit dem

einheitlichen Brechungsindex n

1

hebt sich diese heraus, und man erh�alt die

Abbildungs- oder Linsengleichung

1

g

+

1

b

=

1

f

; f =

n

1

r

(n

2

� n

1

)

: (2:23)

Bei einer dicken Linse ist noch eine Driftstrecke zu ber�ucksichtigen, in der

sich das Licht einfach geradlinig ohne Brechung ausbreitet. Diese Driftstrecke

besitzt die Matrixschreibweise

�

1 L

0 1

�

(L ist die L�ange der Driftstrecke), (2:24)

wie man sich leicht �uberzeugt. Die Matrix f�ur die dicke Linse ist folglich

�

1 0

(n

1

� n

2

)=n

1

r n

2

=n

1

��

1 L

0 1

��

1 0

(n

1

� n

2

)=n

2

r n

1

=n

2

�

=

=

�

1 + (n

1

� n

2

)L=n

2

r n

2

L=n

1

(n

1

� n

2

)

2

L=n

1

n

2

r

2

+ 2(n

1

� n

2

)=n

1

r 1 + (n

1

� n

2

)L=n

2

r

�

=

�

�

1 + (n

1

� n

2

)L=n

2

r n

1

L=n

2

2(n

1

� n

2

)=n

1

r 1 + (n

1

� n

2

)L=n

2

r

�

;

wobei im letzten Schritt die N�aherung L� f verwendet wurde. Bezeichnen wir

schlie�lich mit L

0

:= n

1

L=n

2

die e�ektive Driftl�ange, so ergibt sich die Matrix

�

1�L

0

=2f L

0

�1=f 1�L

0

=2f

�

: (2:25)

2.3.4 Bezeichnungen f�ur Linseneigenschaften

Die soeben konstruierten Linsen, ob nun 
ach oder dick, werden als bikonvex

bezeichnet, wobei die W�olbungseigenschaft (kovex oder konkav) jeweils vom

Linsenk�orper aus gerechnet ist. Eine solche Bikonvexlinse besitzt eine positive

Brennweite und daher positive L�osungen der Linsengleichung f�ur g und b. Sie

ist fokussierend, denn sie bildet einen Parallelstrahl (g = 1) auf den Brenn-

punkt (b = f) ab und wird im Volksmund als Sammellinse bezeichnet. Im

Gegensatz dazu besitzt eine defokussierende Linse negative Brennweite und

folglich keine durchg�angig positive L�osung der Linsengleichung. Ein Paral-

lelstrahl wird von der Achse fortgelenkt, der Brennpunkt einer solche Linse

ergibt sich aus der r�uckw�artigen Verl�angerung der ausgehenden Strahlen. Man

spricht von Streulinsen, und diese sind im allgemeinen bikonkav. Gemischt

konvex-konkave Linsen sind je nach dem Verh�altnis der Kr�ummungsradien fo-

kussierend oder defokussierend. Die Brennweite wird einschlie�lich ihres Vor-

zeichens im Kehrwert als Brechkraft angegeben, die entsprechende Einheit ist

die Dioptrie (1dpt = 1m

�1

)
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2.3.5 Kombinationen aus Linsen

Als letzte Anwendung wollen wir das Brechungsverhalten zweier im Abstand d

hintereinanderliegender Linsen der Brennweiten f

1

> 0 und�f

2

< 0 berechnen.

Die Luft zwischen den beiden Linsen stellt erneut einen Driftraum dar. Man

erh�alt aus der Kombination der Matrizen

�

1 0

1=f

2

1

��

1 d

0 1

��

1 0

�1=f

1

1

�

=

�

1� d=f

1

d

1=f

2

� 1=f

1

� d=f

1

f

2

1 + d=f

2

�

:

Diese Kombination ist fokussierend f�ur

1

f

2

�

1

f

1

�

d

f

1

f

2

< 0 , f

1

� f

2

< d:

F�ur f

1

= f

2

ist diese Linsenkombination stets fokussierend.

2.4 Interferenz

Bei der Interferenz handelt es sich um die

�

Uberlagerung von Wellen. Ob es sich

bei diesen Wellen um elektromagnetische Wellen oder Wellenph�anomene ganz

anderer Art handelt, beispielsweise um Wasserwellen, spielt zun�achst einmal

keine Rolle. Wichtig ist nur die G�utigkeit der folgenden zwei Grundprinzipien:

1) Da die Wellengleichungen linear sind, addieren sich die Amplituden A der

verschiedenen an einem Punkt wirksamen Wellen.

2) Die relevante Me�gr�o�e, die als Intensit�at bezeichnet wird (beim Licht

die Energiedichte des Lichtes) ist proportional zum Betragsquadrat der

Amplitude, I � jAj

2

.

Wir wollen in diesem Abschnitt noch zwei weitere Grundannahmen machen:

3) Es besteht eine feste Phasenbeziehung zwischen den Wellenerregern.

4) Die Wellenl�ange ist dieselbe.

Diese zwei Grundannahmen (erstere ist die Forderung der Koh�arenz ) garan-

tieren die Stationarit�at der Situation, also die zeitliche Konstanz des Inten-

sit�atsmusters. Als Einstieg betrachten wir zwei an einem Punkt zusammen-

fallende Wellen derselben Frequenz, aber unterschiedlicher Phasen '

1

und '

2

.

Die Summe der Wellenfunktionen an diesem Punkt liefert

 (~r

0

; t) =  

1

(~r

0

; t) +  

2

(~r

0

; t) =

= A

1

e

i(!t+'

1

)

+A

2

e

i(!t+'

2

)

= e

i!t

�

A

1

e

i'

1

+A

2

e

i'

2

�

:

Somit ergibt sich f�ur die Intensit�at

I = j (~r

0

; t)j

2

= e

i!t

e

�i!t

�

A

1

e

i'

1

+A

2

e

i'

2

� �

A

1

e

�i'

1

+A

2

e

�i'

2

�

=

= A

2

1

+A

2

2

+A

1

A

2

�

e

i'

1

�i'

2

+ e

i'

2

�i'

1

�

= A

2

1

+A

2

2

+ 2A

1

A

2

cos('

1

� '

2

):

F�ur zwei Wellen gleicher Amplitude A

1

= A

2

= A gilt 0 < I < 4A

2

. Der

tats�achliche Wert der Intensit�at h�angt einzig und allein von der Phasendi�erenz
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� = '

1

�'

2

ab. F�ur I = 0 spricht man von destruktiver , f�ur I = 4A

2

von kon-

struktiver Interferenz. Die Phasendi�erenz kann zum einen durch tats�achlich

unterschiedliche Anfangsphasen, zum anderen aber auch durch Laufzeitunter-

schiede aus dem unterschiedlichen Abstand zu den beiden Erregungszentren

stammen. Man kann beide Ph�anomene formal voneinander trennen,

� = '

1

� '

2

= '

1

(0) � '

2

(0) +

2�

�

�;

� hei�t Gangunterschied, � ist die Wellenl�ange. In einem Experiment werde

die Wasserober
�ache von zwei rhythmisch ins Wasser eintauchenden Stiften

an zwei nebeneinanderliegenden Punkten am Rand einer Wasserwanne aus zu

Schwingungen angeregt. Man erkennt ein Interferenzmuster, welches Zonen

konstruktiver und destruktiver Interferenz aufweist. Da die Anfangsphasen

gleich sind, handelt es sich um einen E�ekt des Gangunterschiedes,

� =

2�

�

� =

2�

�

(r

1

� r

2

);

wobei r

1

und r

2

die Abst�ande zu den beiden Erregungszentren sind. Destruk-

tive Interferenz ergibt sich f�ur � = (2n+ 1)�, also f�ur einen Gangunterschied

r

1

� r

2

=

�

2�

(2n� 1)� = (2n� 1)

�

2

;

konstruktive Interferenz dagegen f�ur � = 2n�, also

r

1

� r

2

= n�:

2.4.1 Vielstrahlinterferenz

Wir betrachten eine Anzahl von n Wellen einer festen Phasenbeziehung

'

k

= '

k�1

+ '; k 2 f2; 3; : : : ; ng

mit gleicher Amplitude A. Dann ergibt sich durch

�

Uberlagerung

A

n

= Ae

i!t

�

1 + e

i'

+ e

2i'

+ : : : + e

i(n�1)'

�

:

A e2
i ϕ

A e1
i ϕ

Re

Im ψ

ψ

ϕ

A=A

A

1

2

Abb. 2.13 Komplexe Darstellung einer

�

Uberlagerung zweier (links) und vieler Wellen (rechts)
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Um die Situation dieser

�

Uberlagerung (Superposition) anschaulicher zu ma-

chen, stellen wir in Abbildung 2.13 links die Amplituden aus dem ersten Bei-

spiel in der komplexen Ebene als Addition zweier Vektoren dar. Ist die Phase

der ersten Welle auf Null gesetzt, so liegt der erste der Vektoren auf der re-

ellen Achse, der zweite kann statt vom Ursprung aus auch an der Pfeilspitze

des ersten ansetzen. Dies ist in der Mitte der Abbildung zu erkennen. Zugleich

k�onnen auf den beiden Vektoren gleichschenklige Dreiecke errichtet werden, die

eine Seite der L�ange r und den Scheitelpunkt gemeinsam haben. Entsprechend

kommen bei der Vielstrahlinterferenz weitere Vektoren und Dreiecke hinzu, die

alle denselben Scheitelpunkt besitzen. F�ur die Amplituden ergibt sich so

A

2

:=

jA

1

j

2

= r sin

�

'

2

�

;

jA

2

j

2

= r sin';

jA

3

j

2

= r sin

�

3'

2

�

; : : :

und damit

jA

n

j = 2r sin

�

n'

2

�

= A

sin(n'=2)

sin('=2)

: (2:26)

Dieses Ergebnis ergibt sich �ubrigens auch ohne Anschauung aus der Formel f�ur

die geometrische Reihe,

A

n

= Ae

i!t

�

1 + e

i'

+ : : :+ e

i(n�1)'

�

= Ae

i!t

1� e

in'

1� e

i'

=

= A

e

in'=2

�

e

�in'=2

� e

in'=2

�

e

i'=2

�

e

�i'=2

� e

i'=2

�

e

i!t

= A

sin(n'=2)

sin('=2)

e

i(n�1)'=2

e

i!t

:

Frage ist nun, bei welchen Werten der relativen Phase ' ein Maximum bzw.

Minimum zu erwarten ist. Minima sind sicherlich diejenigen Stellen, an denen

der Z�ahler, nicht aber der Nenner verschwindet. Dies ist unter der Bedingung

n' = 2�k, k 2 f0; 1; 2; : : : g gegeben, wenn ' selbst kein Vielfaches von 2�

ist. Doch was ist, wenn letzteres erf�ullt ist? Hier kann die l'Hospitalsche Regel

angewendet werden, um den Wert an dieser Stelle zu bestimmen,

jA

n

(')j ! A

jn cos(n'=2)j

j cos('=2)j

! nA f�ur '! 2�m:

Mit I

n

= n

2

A

2

sind dies die Hauptmaxima, an denen es zur maximalen kon-

struktiven Interferenz kommt. Die Nebenmaxima liegen bei n' = (2k + 1)�,

k 2 f0; 1; 2; : : : g, sie fallen stark gegen das Hauptmaximum ab, denn f�ur ihre

Intensit�at gilt n�aherungsweise

I

n

= A

2

sin

2

(n'=2)

sin

2

('=2)

� A

2

1

('=2)

2

=

4n

2

A

2

(2k + 1)

2

�

2

:

So erh�alt man f�ur das erste Nebenmaximum nur 4:5% und f�ur das zweite Ne-

benmaximum nur 1:62% der Intensit�at des Hauptmaximums.



K. Kleinknecht, E. Reya : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Seite 37

0 λ
n b

sinθ
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θ

θ θoutin

∆n

Abb. 2.14 Interferenzmuster (links) und

�

Uberlegungen am optischen Gitter (Mitte und rechts)

2.4.2 Anwendung: Das Beugungsgitter

Ein optisches Liniengitter, also ein Raster aus lichtdurchl�assigen Spalten und

lichtundurchl�assigen Lamellen, auf das ein Lichtstrahl f�allt, stellt in idealer

Weise ein Beispiel f�ur ein solches Ensemble n gleichfrequenter und gleichinten-

siver Lichtstrahlen einer konstanten Phasendi�erenz dar. F�allt der Lichtstrahl

senkrecht auf das Gitter, so sind diese Punktquellen in Phase, und die Pha-

sendi�erenz auf dem dahinter liegenden Schirm ist durch den Gitterabstand

(also den Abstand zwischen den einzelnen Gitterst�aben) und den Winkel � zur

Normalen bestimmt. Wie aus Abbildung 2.14 in der Mitte zu entnehmen ist,

ist der Gangunterschied zwischen zwei benachbarten Oszillatoren

� = b sin � ) ' =

2�b

�

sin � (b ist der Gitterabstand).

b > � ist Voraussetzung daf�ur, da� ein Hauptmaximum entstehen kann. Die

Lage der Hauptmaxima ist nach Gleichung (2.26) gegeben durch die Bedingung

� = b sin � = m�; m 2 f0; 1; 2; : : : g:

Die Lage dieser Hauptmaxima, abgesehen von dem ersten mit m = 0, ist linear

abh�angig von der Wellenl�ange des eingestrahlten Lichtes. Ein Liniengitter zer-

legt damit einen multifrequenten Strahl in seine spektralen Anteile, und diese

Aufspaltung nimmt zu, je kleiner der Gitterabstand gew�ahlt ist. Im Experi-

ment messen wir das Linienspektrum der Quecksilberdampflampe, indem wir

ihr Licht durch ein Liniengitter hindurchschicken und das Spektrum in 3 Me-

tern Abstand messen. F�ur die Spektrallinie der Wellenl�ange � = 435:8nm

ergibt sich eine Auslenkung von 87cm, die auf einen Gitterabstand b � 1:7�m

schlie�en l�a�t. Dieser Wert ergibt sich auch aus den Herstellerdaten, in denen

f�ur dieses Gitter 567 Striche pro mm angegeben sind. Das Auftreten eines dis-

kreten Linienspektrums, wie es hier zu beobachten ist, hat �ubrigens etwas mit

elektronischen

�

Uberg�angen in der Atomh�ulle zu tun, ein Vorgang, der erst im

Rahmen der Quantenoptik im n�achsten Semester zur Sprache kommen kann.

F�allt der Lichtstrahl nicht senkrecht, sondern schr�ag auf das Liniengitter,

so schwingen die Oszillatoren entsprechend phasenversetzt. Man kann auch die
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Re
exion am Gitter betrachten, wie in Abbildung 2.14 rechts dargestellt. Ist

�

1

der Einfall- und �

2

der Ausfallwinkel, so ist der Gangunterschied

� = d sin �

1

� d sin �

2

:

Die Bedingung f�ur die Hauptmaxima ist � = m�. Das erste Hauptmaximum

ergibt sich daher f�ur �

1

= �

2

, also genau auf demWinkel, f�ur den eine spiegelnde

Fl�ache statt des Gitters den Re
ex gegeben h�atte.

2.4.3 Koh�arenz und Laser

Interferenz tritt nur bei Koh�arenz auf, also bei ei-

ner festen Phasenbeziehung zwischen den Wellenerre-

gern. Verschiedene Lichtquellen liefern dagegen kein

koh�arentes Licht, da die Lichterzeugung aus atoma-

ren Prozessen stammt. Diese Prozesse senden Wellen-

pakete einer begrenzten Zeitdauer aus, wie in Abbil-

dung 2.15 gezeigt, und die L�ange dieser Pakete, auch

als Koh�arenzl�ange bekannt, h�angt davon ab, welche

Lebensdauer der Proze� besitzt, aus dem das Licht

stammt.

Kohärenzlänge

Abb. 2.15 Wellenpaket und Koh�arenzl�ange

F�ur Metalld�ampfe beispielsweise ist �t � 10

�8

s, die Koh�arenzl�ange daher

l

c

= c�t � 3m. F�ur Festk�orper ist �t � 10

�9

s, die Koh�arenzl�ange l

c

= c�t �

30cm. Sollen zwei Strahlen, die aus derselben Quelle stammen, miteinander

interferieren k�onnen, so darf der Lichtweg beider Strahlen nicht gr�o�er gew�ahlt

werden als die Koh�arenzl�ange, jl

1

� l

2

j < l

c

. Interferometer sind Apparaturen,

welche dies ber�ucksichtigen. Sie sind im n�achsten Unterabschnitten aufgef�uhrt.

Ein anderes Verfahren, koh�arentes Licht zu erzeugen, ist die Verwendung eines

Lasers. Sein Bauprinzip kann hier nicht erl�autert werden. Soviel sei aber

gesagt, da� er auf der stimulierten Emission beruht, bei der also ein Lichtstrahl

weitere Atome zur Emission vonWellenpaketen anregt, die dannmit dem ersten

in Phase sind.

2.4.4 Interferometer und Spektrometer

Ein aus der Relativit�atstheorie bekanntes Interferometer ist dasjenige, das auf

den amerikanischen Physiker Albert A. Michelson (1852{1931) zur�uckgeht.

Es nutzt die Interferenz zwischen direktem

und re
ektiertem Strahl aus, um Entfer-

nungs�anderungenpr�azise (d.h. mit einer Ge-

nauigkeit von der Gr�o�enordnung der Wel-

lenl�ange) zu messen. Diese Genauigkeit

machte die in Abbildung 2.16 dargestellte

Apparatur zu einem idealen Werkzeug, um

die von einem mit der speziellen Relati-

vit�atstheorie Albert Einsteins konkurrieren-

den Modell vorhergesagte L�angenkontrak-

tion der Apparatur gegen�uber dem

�

Ather zu

messen { und dies zu seinem Nachteil, wie

sich herausstellte.

Spiegel 1

Schirm

Spiegel 2 verschiebbar

Abb. 2.16 Michelsonsches Interferometer
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Der Strahl, der von einer Lichtquelle ausgeht, wird durch einen halb-

durchl�assigen Spiegel in der Mitte aufgeteilt in zwei zueinander senkrechte

Anteile, die nach ihrer jeweiligen Re
exion zur Interferenz gebracht werden.

Verschiebt man einen der Spiegel mit einer Mikrometerschraube, so ist eine

Ver�anderung der Interferenzringe auf dem Schirm zu erkennen. Jeder neu auf-

tretende Ring entspricht dabei einer Phasenverschiebung um �=2. In der Praxis

ist diese Genauigkeit aber viel zu hoch. Hier benutzt man die Schwebungsei-

genschaft zwischen zwei dicht benachbarten Spektrallinien.

Als Lichtquelle benutzen wir im Experiment eine Natriumdampflampe, aus

deren Spektrumwir die LinienNa�D

1

undNa�D

2

mit denWellenl�angen �

1

=

588:9965nm bzw. �

2

= 589:5932nm heraus�ltern. Wir k�onnen die folgenden

beiden Situationen identi�zieren:

- Stellung 1: Der Gangunterschied zwischen den zwei Lichtwegen verschwin-

det, d = 0. Diese Stellung ist an der deutlichen Helligkeit im Zentrum

des Interferenzmusters aus konzentrischen Kreisen zu erkennen, wo sich in

diesem Fall die Hauptmaxima sowohl f�ur Na �D

1

als auch f�ur Na �D

2

be�nden. Das Bild ist im Zentrum kontrastreich.

- Stellung 2: Ausgehend von Stellung 1 suchen wir die Position, bei der das

Bild maximal verwaschen ist. Dies ist der Fall, wenn das Hauptmaximum

zu Na�D

1

mit dem darauf folgenden Minimum zu Na�D

2

zusammenf�allt

und sich Zonen konstruktiver und destruktiver Interferenz in der N�ahe des

Zentralbereichs erg�anzen.

Forderung ist also (wegen �

1

< �

2

)

n�

1

= d = (n� 1=2)�

2

, n =

�

2

2(�

2

� �

1

)

:

Aus den Angaben erhalten wir etwa einen Wert n � 494 und damit einen Gang-

unterschied d = n�

1

� 0:3mm. Der Spiegel ist also um die H�alfte dieses Weges

verschoben worden. Statt aus bekannten Frequenzen auf eine L�angen�anderung

zu schlie�en, kann die Apparatur auch dazu verwendet werden, mit Hilfe der

beobachteten E�ekte die Wellenl�angen selbst zu bestimmen. Man bezeichnet

die Apparatur dann als Spektrometer.

Als weiteres Interferometer sei hier der

Fresnelsche Doppelspiegel genannt. Er ist

in Abbildung 2.17 dargestellt und simu-

liert zwei k�oharente Lichtquellen. Das Wir-

kungsprinzip dieses Doppelspiegels soll mit

der ebenfalls dargestellten Kreiskonstruk-

tion erl�autert werden. Der auf dem Kreis

liegende Lichtpunkt L wird durch die bei-

den im Kreismittelpunkt zusammenlaufen-

den Spiegelebenen auf die virtuellen Licht-

punkte L

1

und L

2

abgebildet.

L

L

L 1
 2

L L1 2

L

Abb. 2.17 Fresnelscher Doppelspiegel
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1 - 10 cm

Schirm

Abb. 2.18 Interferometer nach Fabry und Perot (links) und Lummer und Gehrke (rechts)

In Abbildung 2.18 sind zwei weitere Interferometer dargestellt. Das nach den

franz�osischen Physikern Fabry und Perot benannte Interferometer (in der Ab-

bildung links) benutzt die Mehrfachre
exion an zwei genau parallel zu ju-

stierenden Glasplatten. Die durchgelassenen Strahlen werden von einer Linse

geb�undelt. Die Beobachtung von Schwebungserscheinungen kann zum Nach-

weis kleinster Wellenl�angendi�erenzen benutzt werden. Das Interferometer

der deutschen Physik Otto Lummer (1860{1935) und Ernst Gehrke (1878{

1960) (rechts) besitzt ein �ahnliches Bauprinzip, nur da� es sich hier um eine

durchgehende Glasplatte handelt, aus der oben und unten die Strahlen aus-

treten und nach vorne geb�undelt werden. Besonders trickreich ist die Idee des

Einf�uhrungskeils, die von Gehrke stammt. Tabelle 2.3 zeigt einige zur Fre-

quenztrennung benutzte Interferometer.

Ger�at techn. Daten Zahl der interfe- Aufl�osung

rierenden Strahlen

Prisma dn=d� � 1730cm

�1

� �=�� = 17300

Strichgitter Basis 10cm

n

D

� 1:76

16cm Breite 10

5

�=�� = 3 � 10

5

Michelson 2 �=�� > 10

3

Lummer-Gehrke L�ange 20cm

Dicke 1cm 36 �=�� = 4 � 10

5

Fabry-Perot 1cm Abstand 30 �=�� = 10

6

10cm Abstand 30 �=�� = 10

7

Tab. 2.3 Gegen�uberstellung verschiedener Spektrometer und Interferometer

2.5 Beugung

Unter Beugung versteht man die Abweichungen vom Strahlengang der geome-

trischen Optik, die sich ergeben, wenn die Dimensionen der Objekte, auf die

das Licht f�allt, von der Gr�o�enordnung der Wellenl�ange des Lichtes sind. Wir

wollen zun�achst die Fraunhofersche Beugung (benannt nach Joseph Fraunho-

fer (1787{1826), deutscher Physiker) am Spalt betrachten, bevor wir auf eine

allgemeinere Beugungstheorie eingehen. Der Spalt soll hier exemplarisch f�ur
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weitere Geometrien wie Strich-, Kreuz- und Raumgitter stehen, die �ahnlich zu

behandeln sind.

2.5.1 Beugung am Spalt mit senkrechtem Lichteinfall

Benutzt wird hier die Vielstrahlinterferenz,

wobei nach der Aufteilung der Spaltbreite

in p gleiche St�ucke der Grenz�ubergang p!

1 vollzogen wird. Der Gangunterschied

zwischen zwei benachbarten Teilstrahlen ist

gem�a� Abbildung 2.19 gegeben als

� =

2�d

�p

mit d = BF = b sin':

ϕ

ϕ

b

d

AB

F

Abb. 2.19 Beugung am Spalt

Ist �e

i!t

die Amplitude am Punkt A, also diejenige des ersten Teilstrahls, so

gilt entsprechend f�ur die Gesamtamplitude

A = �e

i!t

(1 + e

�i�

+ e

�2i�

+ : : :+ e

�i(p�1)�

) =

= �e

i!t

1� e

�ip�

1� e

�i�

= �e

i!t

sin(p�=2)

sin(�=2)

e

�i(p�1)�=2

:

Ausgedr�uckt durch die Phasendi�erenz � = p� zwischen erstem und letztem

Strahl ergibt sich

A = �e

i!t

sin(�=2)

sin(�=2p)

e

�i(p�1)�=2p

:

Im Grenzfall p!1 erh�alt man mit A

0

= �p

A = A

0

e

i!t

sin(�=2)

�=2

e

�i�=2

und damit schlie�lich f�ur die Intensit�at

I = A

2

0

sin

2

(�=2)

(�=2)

2

mit � =

2�b

�

sin': (2:27)

F�ur ' = 0, also in Verl�angerung des einfallenden Strahls, liegt das Hauptmaxi-

mum oder Zentralbild mit Intensit�at I

0

= A

2

0

. Weitere charakteristische Stellen

sind

2) d = �=2: abfallende Flanke, I = 4I

0

=�

2

= 0:406I

0

3) d = �: erstes Minimum, I = 0

4) d = 3�=2: erstes Nebenmaximum, I = 4I

0

=9�

2

= 0:045I

0

5) d = 2�: zweites Minimum, I = 0

6) : : :

Das Beugungsmuster steht dabei senkrecht zum Spalt, w�ahrend es in Richtung

des Spaltes die Ausdehnung des Strahls besitzt. Ganz allgemein gilt, da� das
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Beugungsmuster stets eine zum beugenden Objekt komplement�are Ausdehnung

besitzt. F�ur eine Rechteck�o�nung ergibt sich so auch

I = I

0

sin

2

(�

x

=2)

(�

x

=2)

2

sin

2

(�

y

=2)

(�

y

=2)

2

mit �

i

=

2�b

i

�

sin'

i

; i 2 fx; yg; (2:28)

wobei b

x

und b

y

die Ausdehungen in x- und y-Richtung und '

x

und '

y

die

Winkelauslenkungen in diese Richtungen sind. Als Interferenzmuster ergibt

sich ein Rechteckmuster mit einer Rasterung der L�ange 2�=b

i

, also ein Raster

der komplement�aren Ausdehung. F�ur eine kreisf�ormige

�

O�nung erh�alt man

schlie�lich ein ringf�ormiges Muster, das ausgedehnter wird, je enger das Loch

geschlossen ist.

2.5.2 Das Babinetsche Theorem

Eine Komplementarit�at anderer Art postuliert das Babinetsche Theorem:

Komplement�are Schirme liefern bei Fraunhoferscher Beugung au�er-

halb des Bereiches der geometrischen optischen Abbildung die gleichen

Beugungserscheinungen.

Komplement�ar hei�t in diesem Zusammenhang, da� eine

�

O�nung durch eine

undurchsichtige Blende vertauscht wird und umgekehrt. Als Versuch dazu

betrachten wir die Beugungserscheinungen an einem Draht und einem Spalt

gleichen Durchmessers bzw. Breite.

2.5.3 Beugungstheorie

Zum Abschlu� soll hier ganz kurz die Beugungstheorie angerissen werden (aus-

f�uhrlicher �ndet sie sich in Max Borns

"

Optik\ in x45). Die Beugungstheorie

macht drei Annahmen �uber die Lichterregung in der Blendenebene, d.h. der

Ebene, welche sich aus der Fortsetzung der Blendenw�ande ergibt:

- Es gilt das Huygenssche Prinzip, nach dem sich das Licht im Raum 2 so

ausbreitet, als wenn von jedem Punkt der Blenden�o�nung eine Kugelwelle

der Form

A = A(B)

e

ikr

r

ausginge (zu den Bezeichnungen vergleiche Abbildung 2.20 links).

- Die Erregung in der Blenden�o�nung B ist dieselbe, als wenn keine Blende

vorhanden w�are, und wird von einer Kugelwelle verursacht, die von der

Quelle Q im Abstand r

0

zur Blenden�o�nung stammt,

A(B) = A

0

e

ikr

0

r

0

:

- Auf dem Blendenw�anden ist A = 0.

Durch

�

Uberlagerung der Kugelwellen ergibt sich die Amplitude am Beobach-

tungspunkt P �uber die Kirchho�-Fresnelsche Beugungsformel

A(P ) = C

Z

B

A(B)

e

ikr

r

(cos(~n; ~r ) � cos(~n; ~r

0

))dB =

= CA

0

Z

B

e

ikr

0

r

0

e

ikr

r

(cos(~n; ~r ) � cos(~n; ~r

0

))dB
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r
r’

r0

r’ r

R’ R

Zentralstrahl

αα ’
n

Q P

Bereich 1 Bereich 2

Abb. 2.20 Konstruktion der Beugungstheorie, rechts die N�aherung kleiner Blenden�o�nung

(Gustav Robert Kirchho� (1824{1887), deutscher Physiker). Wir betrachten

nun die N�aherung kleiner Blenden�o�nung, wie sie in Abbildung 2.20 rechts

dargestellt ist, und legen den Ursprung des Koordinatensystems in den einen

Randpunkt der Blende. Dann ist der Ortsvektor des Empfangpunktes P mit

~

R und der Ortsvektor der Quelle Q mit

~

R

0

gegeben, wohingegen der Verbin-

dungsvektor von einem beliebigen Punkt der Blenden�o�nung mit Ortsvektor

~r

0

beispielsweise zu P in das als klein anzunehmende Verh�altnis r

0

=R zu ent-

wickeln ist,

~r =

~
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