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Vorwort

Das vorliegende Skript zur Optik entstammt einer Vorlesung zur ,,Physik TIT¢,
die von Herrn Prof. Konrad Kleinknecht* und Herrn Prof. Ewald Reya** im
Wintersemester 1984/85 an der Universitat Dortmund im Wechsel gehalten
wurde. Dieser Wechsel beruht auf einem der Grundprinzipien der integrierten
Anfangerkurse zur Physik an der Universitat Dortmund, welche den Studieren-
den sowohl die experimentellen wie auch die theoretischen Aspekte in gleicher
Weise vor Augen fihren sollen. Da jedoch in diesem Semester noch andere
Themen, u.a. der gesamte Bereich der Lagrangeschen Mechanik, zu behandeln
war, kam die Optik dabei etwas zu kurz. Ich habe mich daher bemiiht, an
einigen Stellen ausfuhrlicher zu sein, als es die Vorlesenden konnten.

Mainz, im September 1998 Stefan Groote***
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Die Optik ist eine der altesten und zugleich eine der jingeren physikalischen
Disziplinen. Waren Phanomene der geometrischen Optik bereits im Alter-
tum bekannt und wurden von den antiken Kulturen untersucht, so ist erst im
20. Jahrhundert die ganze Bandbreite des Spektrums elektromagnetischer Wel-
len bis hin zum Radiofrequenzbereich erkannt und erforscht worden. Zugleich
zeigte der Dualismus zwischen Welle und Teilchen den Weg in ein neues Na-
turverstindnis auf. In diesem Sinne wird in der Optik wohl der Ubergang von
der klassischen zur Quantenmechanik am deutlichsten sichtbar und erfahrbar.

Auch wenn heutzutage mit der Quantenelektrodynamik ein theoretisches
Modell zur Verfugung steht, das die Phanomene der elektromagnetischen Wech-
selwirkung in sich konstistent beschreibt, ist aufgrund der historischen Entwick-
lung, aber auch aufgrund praktischer Erwagungen eine vielschichtige Beschrei-
bungsweise vorzuziehen. Wir unterscheiden je nach Energie der Strahlung und
dem Verhaltnis zwischen der Wellenlange und den réaumlichen Abmessungen
der bestrahlten Strukturen drei verschiedene Bereiche der Optik:

Geometrische Optik: Die geometrische Optik ist anwendbar, wenn
die Energie der einzelnen Strahlungsteilchen (Photonen) klein gegen-
uber der Nachweisempfindlichkeit der Apparatur und die Wellenlange
klein gegentiber der Dimension der Objekte ist. Die geometrische
Optik beschreibt die Ausbreitung von Lichtstrahlen.

Wellenoptik: Auch hier ist die Photonenenergie klein gegeniiber
der Nachweisempfindlichkeit. Jedoch kommt hier die Wellenlange
in dem Bereich der raumlichen Strukturen, auf welche die Strahlung
fallt. Die Wellenoptik beschreibt Beugungs- und Interferenzerschei-
nungen und bestimmt damit charakteristische Eigenschaften wie das
Auflosungsvermogen einer optischen Apparatur.

Quantenoptik: Ist die Energie h des einzelnen Strahlungsteilchens
so grof, dafl sie von dem Nachweisgerat aufgelost werden kann, so
gelangt man in den Bereich der quantenmechanischen Beschreibungs-
weise. Albert Einstein hat 1905 mit Hilfe der Quantenhypothese den
Photoeffekt erkléaren konnen. Phanomene, die allgemein mittels der
Quantenoptik beschrieben werden, sind die Emission und Absorption
von Photonen in Atomen und Kernen.

Den ersten beiden Bereichen werden die folgenden Kapitel gewidmet sein,
wahrend die Quantenoptik erst im Zusammenhang mit der Quantenmechanik
in der Vorlesung .,Physik IV* behandelt werden kann.
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1. Ausbreitung elektromagnetischer Wellen

Wie bereits in der Vorlesung ,Physik II* gezeigt wurde, ist die Ausbreitung
elektromagnetischer Wellen eine Konsequenz der Feldgleichungen, die erstmals
von James Clerk Maxwell (1831-1879) in geschlossener Form aufgestellt wurden
und seither zum Kernbestandteil der Elektrodynamik gehoren. Im Rahmen der
Optik geht es vor allem um die Ausbreitung von elektromagnetischen Wellen in
verschiedenen Medien. Daher sollen hier die materieabhdangigen Mazwellschen
Gleichungen an den Anfang gestellt werden,

divﬁ:p rotE:—a—B
ot

. (1.1)
divB=0 rotﬁ—_f—l—a—D
e — T
Dabei ist E die elektrische Feldstarke, D die elektrische Verschiebungsdichte
oder freie elektrische Feldstarke, B die magnetische Feldstarke und H die freie
magnetische Feldstarke. Der Begriff ,frei” bezieht sich in diesem Zusammen-
hang darauf, dafl diese Groflen, wie zu erkennen ist, uber die Maxwellschen
Gleichungen an die aufleren, also nicht durch die Felder selbst induzierten,
freien Ladungen und Stromdichten gekoppelt sind. Zwischen freien und effek-
tiven Feldstarken bestehen die Zusammenhange

. L. D T
D=¢wE+P und H=—B-M (1.2)
Ho
mit der Polarisation P und der Magnetisierung M.

Die Dielektrizititskonstante ¢o = 8.854-107'2C?s? /kg m® und die Perm.ea-
bilitdtskonstante po = 4m - 10~ kg m/C? sind Naturkonstanten (der erstaunli-
che, mathematisch anmutende Wert fur p ruhrt daher, daf diese Konstante in
die Definition der Stromstarkeneinheit eingeht, die im internationalen Einhei-
tensystem eine Grundeinheit ist). In den meisten Medien wird die Polarisation
bzw. Magnetisierung, welche durch die angelegten Felder induziert wird, pro-
portional zu diesen Feldern. Der Proportionalitat wird durch die elektrische
bzw. magnetische Suszeptibilitat ein expliziter Ausdruck verliehen,

P = XE@gE und M = XMﬁ (1.3)

(DaB in der zweiten Beziehung die freie magnetische Feldstirke benutzt wird,
hat historische Griinde). Fiir alle Medien, in denen diese Proportionalitat
gegeben ist, lassen sich die Gleichungen (1.2) und (1.3) zusammenfassen zu

—

D =¢eo(1+ XE)E =: 5055 und B = to(l + XM)ﬁ =: /,LO/,LET, (1.4)

und die neu eingefuhrten Groflen sind die Dielektrizitat ¢ und die Permeabilitat
tt, beides materialabhangige Grofen.
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1.1 Energie- und Impulssatz

Das elektromagnetische Feld vermag auf geladene Materie mechanisch Energie
und Impuls zu iibertragen. Das bemerkte der Physiker J.H. Poynting bereits
1884. Diese Ubertragung lait sich mit Hilfe der Lorentzkraft

F=q(E +7¥x B), (1.5)

mit der das elektromagnetische Feld auf eine Punktladung ¢ wirkt, beschrei-
ben und nach und nach durch reine Feldgroflen ausdricken. Dies wollen wir
hier vollziechen. Die Leistung, also die mechanische Arbeit pro Zeiteinheit, ist
gegeben durch

dEmec [ — — — — ~ [N —
dth:v-F:qv-(E—l—va):qv-E. (1.6)

Hier fallt, wie auch nicht anders zu erwarten, die Wirkung des magnetischen
Feldes zunachst heraus. Das elektrische Feld hingegen erzeugt einen elektri-
schen Strom, indem es die Ladung beschleunigt. Gehen wir nun zu einer kon-
tinuierlichen Ladungsverteilung tiber, so ist diese Leistung zu ersetzen durch

dFE mech - =
= Ed’z. 1.
7 / 9 z ( 7)

An dieser Stelle beginnt die Umstellung auf reine Feldgroflen. Denn der er-
zeugte Strom ruft wiederum ein magnetisches Feld hervor. Wir setzen fur j die
passende Maxwellsche Gleichung ein und erhalten

dEmech = al—j =
Y BN - Ay - A Ve 1.
o /v <8t v ) . (1.8)

Als nachstes wird sowohl beztiglich der raumlichen wie der zeitlichen Ablei-
tung eine partielle Integration vollzogen, um nachher das Integral reduzieren
zu konnen. Zu beachten ist

V- (ExH)=H-(VxE)—E-(VxH),
und damit
dEmech = al—j xd = = 7 3
- _ E.- -~ _H. E A(E x H) )&z =
dt /V< ot (VX E)+ V- (£ x )> !
. 9D - OB L.
= — E-—+H.-— (E x H))d®z =
/V< a1 gr PV (Ex )> v
18 — — g d - 3
— _ __—(E-D+B-H)+V-(ExH)\|d’x =
v\ 20t

. dE ;
= /wEMd%— (E x H) - di = — EM—%S-dJ (1.9)
14 O O
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mit der Energiedichte
]_ — — —
wEM:§(E-D—|—B-H) (1.10)

des elektromagnetischen Feldes und der Energieflufidichte
S=ExH. (1.11)

(auch als Poyntingscher Vektor bekannt) unter Verwendung des Gauflschen
Satzes. Zusammenfassend bedeutet die Gleichung (1.9), dal die Summe aus
mechanischer und elektromagnetischer Energie sich in dem Mafle verringert, in
dem ein Energieflufl nach auflen erfolgt.

Auch die Impulstbertragung des elektromagnetischen Feldes konnen wir
durch reine Feldgroflen ausdricken. Der Impulstbertrag pro Zeiteinheit ist
einfach die Kraft, hier ist also direkt die Lorentzkraft aus Gleichung (1.5) zu
verwenden. Wird erneut die Ladung durch eine kontinuierliche Ladungsvertei-
lung ersetzt, so folgt

d_)mec = it =
P hz/(pE+j><B>d3:1;:
14

dt
:/ (E(v-ﬁ)+§x (a—D—VXﬁ>>d3x. (1.12)
v ot

Zu beachten ist hier

. 9D 0 - =~ - OB 9, = =~ = .
sowle ferner
. OF OE,,
<D X (V X E)>z = gijijgklma—l'l = ((Sil(S]‘m — 5im5jl)Dja—$l =
9B, 0B 10, 9 _ D,
=D, Ox; _D]al']‘ N 26:1:i(E]D])_8:1;j(ElD])+EZ Oz’

Der letzte Term fallt, in Gleichung (1.12) eingesetzt, gegen den ersten Term
heraus. Gleiches ergibt sich fur den dritten Term, wobel ein analoger Aus-
druck mit 0B;/0xz; aufgrund der Maxwellschen Gleichungen erst gar nicht in
Erscheinung tritt. Fihrt man als neue Grolen also die Impulsdichte

j=DxB (1.13)
und den Mazwellschen Spannungstensor T mit den Komponenten
Tij = EiDj + H;Bj — upnmdi; (1.14)

ein, so schreibt sich Gleichung (1.12) schliefllich in der Form

dPmech 0g 0T\ 4 d o3 .
dt /V< ot " ae )T @ )Y x+7oe sdaj. (1.15)
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In Medien, die eine Linearitat zwischen freiem und effektivem Feld gemafl Glei-
chungen (1.4) zeigen, ist die Impulsdichte proportional zur Energiestromdichte,
wobei die Proportionalitat durch ¢ = 550/,L/,L0§ gegeben ist. Da diese Propor-
tionalitat damit jedoch fir jedes Medium anders ausfallt, ist es sinnvoll, diese
beiden Dichten unabhéngig voneinander zu definieren. Gleichung (1.15) driicks
aus, dafl sich die Anderung des Gesamtimpulses in einer ,,Verspannung®, also
einer Deformation der Ladungsverteilung auflert.

Eine Anmerkung zum Abschluf}, die etwas tiber den Rahmen hinausgreift.
Die beiden Gleichungen (1.9) und (1.15), die eigentlich vier Gleichungen dar-
stellen, lassen sich in einer relativistisch kovarianten Form schreiben. Aus der
Vorlesung ,,Physik II* wissen wir bereits, dafl sich Energie und Impuls zu ei-
nem Impulsvierervektor zusammenfassen lassen, der die Transformationseigen-
schaften eines Vektors im vierdimensionalen Minkowskiraum besitzt. Wir in-
tegrieren nun die Gleichungen tiber die Zeit und fassen die rechten Seiten ent-
sprechend zu einem vierdimensionalen Tensor zweiter Stufe zusammen, dem
elektromagnetischen Viererspannungstensor T = (THY),

prlilech = _%Tl“/dauv (116)

wobei da, die Komponente des differentiellen Oberflachenvierervektors der
dreidimensionalen Hyperflache in Richtung der Koordinate ¥ darstellt, dessen
Maf aus dem vierdimensionalen durch Fortlassen des Differentials dz” gebildet
wird, also d*x = d2” A da, (keine Summation). T setzt sich zusammen aus

—

T = (E-D+H-B), T%=(ExH),,
J

N | —

4 S o y 1 o - o
T°=(DxB)i, TY=ED;+HB;~(E D+H B

Dieser vierdimensionale Spannungstensor wird in der allgemeinen Relativitats-
theorie als Inhomogenitat der Gravitationsgleichung wieder auftreten.

1.2 Wellenausbreitung in Nichtleitern

Die Wellengleichungen fir das Vakuum sind bereits im Rahmen der Vorlesung
»Physik IT* aufgestellt und gelost worden. Die Wellengleichungen fiir homogene
und isotrope Nichtleiter sind diesen von der Struktur sehr ahnlich. Denn fur
diese Medien lassen sich die Gleichungen (1.4) verwenden und zugleich ausnut-
zen, daf} keine freien Ladungen oder Strome existieren. Setzt man ferner voraus,
daf die Dielektrizitat und Permeabilitéat zeitlich konstante Materialgrofien sind,
so kann man die sich ergebenden Maxwellschen Gleichungen

. . 9B -
VEZO, VXE+6—:0,
¢ ) (1.17)
\Y% BZO, VXB—€0€MOM—:0
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durch wechselseitiges Einsetzen entkoppeln, man erhalt zwei strukturell gleiche
Differentialgleichungen

0*B
ot?

O2E

. (A=V-V) (118

AE = E0E o AB = E0E Lo L

fur die jeweils drei Vektorkomponenten, also sechs Gleichungen derselben Form

1 9%

A=

(1.19)

wobel wir
1 c

vi= =
VEOEHOM /el

verwendet haben. Lost man diese Gleichungen und vergleicht die Losung mit
derjenigen fur das Vakuum, so erkennt man, dafl an die Stelle der Lichtge-
schwindigkeit ¢ der Parameter v tritt, der sich somit als Geschwindigkeit der
elektromagnetischen Welle im Nichtleiter entpuppt. Da die Ferromagnete nicht
zu den Nichtleitern zdhlen, kann zusétzlich v ~ ¢/+/¢ genahert werden. Die
Losung indes wollen wir hier nicht erneut vollziehen, stattdessen aber daran
erinnern, dafl das elektrische und das magnetische Feld sowohl aufeinander wie
auf der Ausbreitungsrichtung senkrecht stehen. Diese Ausbreitungsrichtung ist
durch den Wellenvektor k beschrieben, und zwischen ihm und der Kreisfrequenz
w besteht die Beziehung

(1.20)

272
- ck
w? = vk = : (1.21)
ep
Diese Gleichung ist die einfachste Ausfihrung einer Dispersionsrelation, von
der wir noch einige weitere kennenlernen werden.

1.3 Wellenausbreitung entlang von Leitern

Die Ausbreitung elektromagnetischer Wellen entlang von elektrischen Leitern
unterscheidet sich grundsatzlich von derjenigen in Nichtleitern, da diese Leiter
der Wellenausbreitung spezielle Randbedingungen auferlegen. Eine Ausbrei-
tung entlang solcher sogenannter Wellenleiter erfordert jedoch eine entspre-
chend hohe Frequenz, denn der Verschiebungsstrom fD = 85/(% ist essenziell
wichtig fur die Entstehung elektromagnetischer Wellen, das elektrische Feld
muf also gentuigend stark zeitlich wechseln. Aus diesem Grund werden Wel-
lenleiter heute vornehmlich zur analogen und digitalen Signalibertragung in
Computernetzwerken und zur hochfrequenten Energietibertragung in Beschleu-
nigern und im Radar eingesetzt. Die hochfrequente Signaliibertragung wird
allerdings bereits teilweise durch die Glasfasertechnologie bewerkstelligt. Ohne
Wellenleiter ergeben sich zwei gravierende Nachteile:

e Energieverlust bei der Ubertragung
e Ubersprechen (“cross talk”) von einem Kabel zum néchsten

Fir die verschiedenen Frequenzen und damit Signaltaktzeiten werden verschie-
dene Wellenleiter eingesetzt:



Seite 10 ..o Optik

1. Im MHz-Bereich (Taktzeiten ps): Flachbandkabel und twisted pair
2. Im GHz-Bereich (Taktzeiten ns): Koaxialkabel

3. bei hochsten Frequenzen: Hohlleiter (Koaxialkabel ohne Innenleiter)

Die verschiedenen Typen von Wellenleitern sind in Abbildung 1.1 dargestellt.

Dielekrikum

\

Koaxial twisted pair  Dielektrikum Flachband

Abb. 1.1 Verschiedene Typen von Wellenleitern

1.3.1 Die Transmissionslinie

Als erstes Beispiel soll uns die Transmissi-
onslinie als Modell fur die einfachste Art ei-
nes Wellenleiters dienen. Sie ist im Gegen- 1(x) I(x+ AX)
satz zu dem, was spater noch kommen wird,

ohne Verwendung der Maxwellschen Glei-
chungen zu behandeln. Wie in der nebenste- U(x) U(x+AX)
henden Abbildung 1.2 verdeutlicht, wird sie
durch die Beziehung zwischen Spannungen
und Stromen entlang der Transmissionslinie X X+ AX

gekennzeichnet, wobei der untere Leiter ge-
erdet sein soll.

Abb. 1.2 Transmissionslinie

Als Materialgrolen fihren wir die Kapazitat Cp und die Induktivitat Lg
pro Langeneinheit ein. Die Spannungsdifferenz zwischen den Orten o und x +
Ax entlang der Transmissionlinie sorgt zum einen fiir einen Stromfluf}, es gilt

AU:U(:I;—I—A:I;)—U(:I;):—L-%:—LOAQ(;-%. (1.21)

Andererseits wird die Spannung aber gerade durch die auf der Leitung liegende
Ladung hervorgerufen, @ = C' - U = CyAx - U, deren zeitliche Veranderung

uber J -
AL =I(e 4+ Az) — I(x) = - 9@ — _cyne. U (1.22)

dt dt
mit der Differenz zwischen den Stromstarken an den verschiedenen Punkten
entlang der Transmissionslinie zusammenhangt. Im Grenzfall Az — 0 1a3t sich
aus diesen beiden Gleichungen ein Differentialgleichungssystem konstruieren,

welches die Transmission beschreibt,

ou oI oI ou
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Ineinander eingesetzt ergibt sich

o*U o*U oI o1

— -z — = LyCo—. 1.24
O o o gn (1.24)
Diese strukturgleichen Wellengleichungen lassen sich allgemein beispielsweise
durch die Methode der Charakteristiken losen, fur die Spannung U ergibt sich

damit

1
VILoCo'

wobei Uy und U, zweifach differenzierbare Funktionen sind. Fir die spezielle
Losung

U(x,t) =Ui(x —vt) + Us(x +vt) mit v = (1.25)

U(x,t) = U sin(kx — wt)
mit w = k - v wollen wir die Stromstarke berechnen. Es ist

OI(x,t) 1oV kUs

=——— =———cos(kx —wt) und damit durch Integration

at LO 8:1; Lo
I(x,t) = - Osm(kx—wt)—wLOU(x,t) =

Spannung und Stromstarke sind also in Phase, der Wellenwiderstand

(.ULO LO LO
T Uooes VG (1.25)

charakterisiert den Wellenleiter. Wird ein Wellenleiter mit einem Ohmschen

Widerstand desselben Wertes abgeschlossen, so wird eine Reflexion an diesem
Ende vermieden, denn der Strom, der durch diesen Widerstand lie3t, erzeugt
eine Spannung, die derjenigen gleich ist, die im selben Moment am Ende an-
gekommen ist. Aus ihrer Differenz bildet sich also keine Spannung, die eine
zurticklaufende Welle hervorrufen wurde.

1.3.2 Randbedingungen fur einen perfekten Leiter

Ein perfekter Leiter ist ein solcher, der ei-
nem Strom keinen Widerstand entgegen-
setzt, seine Leitfahigkeit ist damit unbe-
schrankt grof. Das hat zur Konsequenz,
dal jede Spannung, die innerhalb des Lei-
ters auftritt und damit jedes elektrische Feld
sofort kompensiert wird. Aus der Vorle-

sung zur ,Physik I wissen wir nun aber
aufgrund des Stokesschen Satzes, dafl die
Parallelkomponenten des elektrischen Fel-
des auflerhalb und innerhalb einer Leiter-
oberflache gleich groff sind (siehe Abbil-
dung 1.3 oben). Fiir einen perfekten Leiter
verschwindet daher die Parallelkomponente

des elektrischen Feldes nahe der Oberflache.

Abb. 1.8 Der perfekte Leiter
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Auch fur das magnetische Feld ergibt sich fur einen perfekten Leiter eine
einfache Randbedingung. Legt man einen abgeflachten Zylinder in Gedanken
so, dafl die eine Flache innerhalb, die andere auflerhalb des Leiters zu liegen
kommt, wie in Abbildung 1.3 unten gezeigt, so ergibt der Integralsatz

%é-dazo

die Gleichheit der Normalkomponenten des magnetischen Feldes innerhalb und
aulerhalb des Leiters. Das Magnetfeld innerhalb des Leiters induziert im Lei-
ter aber einen Strom, der aufgrund der Lenzschen Regel ein dem angelegten
Magnetfeld genau entgegengesetzes Magnetfeld erzeugt, also dieses im Leiter
ausloscht. Damit verschwindet die Normalkomponente des Magnetfeldes auch
auferhalb des Leiters. Randbedingungen an den Oberflachen perfekter Leiter
sind also

Ey=0 und B, =0. (1.26)

Fur einen Hohlleiter wird danach getrachtet, die Eigenschaften eines perfekten
Leiter duch Verwendung beispielsweise versilberten Kupfers oder gar eines su-
praleitenden Materials moglichst gut zu erreichen. Wir wollen daher im folgen-
den Abschnitt den idealen Hohlleiter diskutieren, welcher den Idealfall dieser
Bestrebungen darstellt, dessen metallische Begrenzung der elektromagnetischen
Wellenausbreitung also die oben genannten Randbedingungen setzt.

1.4 Der Hohlleiter

Die Wellengleichung fir den idealen Hohlleiter 1483t sich aus der vollstandigen
Wellengleichung (1.19) zunéchst durch Separation der beiden Abhéngigkeiten
bezuglich der Zeit und der einzigen freien Richtung, die wir als z-Richtung
wahlen, vereinfachen. Diese Separation liefert

0? 0? w?
<w‘|‘a—y2‘|‘v_2_k§> qb(l‘,y) =0, (1'27)

wobel ¢ erneut fur die Komponenten des elektrischen und magnetischen Fel-
des steht. Die absepartierte Funktion beschreibt die Ausbreitung einer ebe-
nen Welle mit Kreisfrequenz w und Wellenzahl k. in z-Richtung und lafit
sich fiir eine vorwéartslaufende Welle als sin(k.z — wt) beschreiben. Wie sich
nachher noch herausstellen wird, sind die Losungen der reduzierten Wellen-
gleichung (1.27) nicht eindeutig durch die Randbedingungen gegeben. Um
die Schwingungen in sogenannten Moden klassifizieren zu konnen, wird eine
zusatzliche Annahme tuber das globale Verschwinden der z-Komponente eines
der beiden Felder gemacht. Man spricht von ...

. transversal magnetischen Wellen (TM-Mode),
wenn die z-Komponente des Magnetfeldes verschwindet, und von ...
. transversal elektrischen Wellen (TE-Mode),

wenn die z-Komponente des elektrischen Feldes verschwindet.
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1.4.1 Longitudinales Feld im idealen Hohlleiter

Im folgenden wollen wir uns mit dem TM-Mode befassen und zunachst die
Wellengleichung fir die z-Komponente des elektrischen Feldes losen. Wir tun
auch dies durch eine Separation der Variablen,

O*E. d*E, O*E. d*E,
E.(z,y) = Ei(2)E2(y) = Oz T de2 v 6—y2: ld—yZ’
also , , )
d°F d°F
1E2—|—E1 2 + w——kg E1E2:0 oder
dz? Ty’ v?

1 d2E1 _ <w2 k2 Ld2E2>

E, dz? vz PR, dy?

Die linke Seite dieser Gleichung ist eine Funktion von z, die rechte eine von y.
Daher miissen beide konstant sein, und als Konstante wéahlen wir —k2. Dann
entkoppelt diese Gleichung zu

d*E,
dz?

d*E, w?
_ 1.2 _ 2 2 .12
= —k; Fn, aE — <_v2 — ki — kl,> Ey =1 =k, Es,

die allgemeinen Losungen sind
Eq(x) = Ay cos(kyx) + Bysin(kyr) und  Ej(y) = Ap cos(kyy) + Basin(kyy).

Nun kommt die Randbedingung ins Spiel. Die z-Komponente des elektrischen
Feldes verschwindet auf den Begrenzungen des Hohlleiters. Betrachten wir
einen Hohlleiter mit rechteckiger Querschnittsflache der Kantenlangen a und b
in x- bzw. y-Richtung, so konnen wir als Randbedingungen

E.(0,y)=E.(a,y) =0 und E.(z,0)=E.(x,b) =0
ansetzen. Fur die allgemeinen Losungen bedeutet dies

Ei(0)=0 = A; =0, Ei(a) =0 = Bysin(kya) =0 = kya =mmr,
EQ(O) =0 = Ay = 0, Ez(b) =0 = B, sin(kyb) =0 = kyb =nm,

wobel m und n ganze Zahlen sind. Wir nennen diesen Effekt der Zuordnung
ganzer Zahlen zum Wellenvektor eine Quantisierung und die Richtung, in der
sie auftritt, die Quantisierungsrichtung. Im betrachteten Hohlleiter sind diese
Quantisierungsrichtungen also durch  und y gegeben. So quantisiert, ergibt
sich

E.(7,t) = Egsin(kyx)sin(kyy) sin(k.z — wt)

) mm nm
mit ky =—, ky=— und
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Zu erkennen ist, dafl dieser letzte Ausdruck nicht fiir alle Werte von w positiv
ist. Es gibt vielmehr eine Abschneidefrequenz
m?  n?

Winp = TV 5 + 7 (1.29)
fur die k,, verschwindet und unterhalb derer die Wellenzahl imaginar wird.
Dies bedeutet, dafl der Hohlleiter nur Frequenzen leiten kann, deren Frequenz
hoher als w;,, ist. Ein Hohlleiter wirkt also als Hochpafl. Fur Frequenzen
unterhalb der minimalen Abschneidefrequenz wy ; ist dringend ein Innenleiter
erforderlich. Mit diesem Innenleiter sind dann sowohl elektrisches als auch
magnetisches Feld transversal, wir sprechen von dem TEM-Mode.

1.4.2 Phasen- und Gruppengeschwindigkeit

Am Beispiel des Hohlleiters lassen sich am besten die verschiedenen Konzepte
der Ausbreitungsgeschwindigkeit elektromagnetischer und auch anderer Wel-
lenphédnomene veranschaulichen. Stellen wir Gleichung (1.28) nach der Kreis-
frequenz w um, so erhalten wir

w:vq/k%—l—kg—l—kg =:v-k. (1.30)

Nun ist alleine die z-Richtung fur die Wellenausbreitung zustandig. Damit
aber driften die verschiedenen Definitionen fir die Ausbreitungsgeschwindigkeit
auseinander:

- Die Wellengeschwindigkeit
v =/ VER

- Die Phasengeschwindigkert

vpp = W =v i = vk—z,
sie 1st grofler als die Wellengeschwindigkeit v.
- DieGruppengeschwindigkest
Ow vk, k.,
vGr = = =v—

Ok:  fiztk2+k2 k7

sie ist kleiner als die Wellengeschwindigkeit v.

Vielleicht lassen sich die Bedeutungen und
Unterschiede am besten am Beispiel einer
schrag durch einen Kanal flieenden Welle
veranschaulichen, wie es in Abbildung 1.4
gezeigt ist. Auch im Fall der elektroma-
gnetischen Wellenausbreitung im Hohlleiter
laBlt sich ein Winkel ¢ definieren,

Vpht
: k. k.
Sl]_’]_gp = — = ‘ VGr t

N TEyTEYE)

Abb. 1.4 Wellenausbreitung im Kanal
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mit dem einzigen Unterschied, dafl die Wellenzahl hier in z- und y-Richtung
quantisiert ist. Bis auf diese Einschrankung gilt aber auch fur diesen etwas
unanschaulichen Vorgang

v .
VPpL = — und vg, = vsing.
sin

1.4.3 Transversales Feld im idealen Hohlleiter

Ist einmal die z-Komponente des elektrischen Feldes bestimmt, so ergeben sich
fur den TM-Mode die anderen Komponenten des elektromagnetischen Feldes
uber die Maxwellschen Gleichungen. Die Herleitung ist zwar etwas untibersicht-
lich, soll hier aber dennoch vorgenommen werden, da sie zeigt, an welcher Stelle
die Forderung der Transversalitat des magnetischen Feldes eingeht. Zunachst
einmal gentigen die Randbedingungen nicht, um auch E, und E, eigenstandig
zu bestimmen. Wir haben aufgrund der Geometrie als Forderungen lediglich
E.(x,0) = Ey(z,b) =0 und E,(0,y) = Ey(a,y) = 0. Dies ermdglicht uns nur

die Bestimmung jeweils einer Quantisierungsrichtung, Losungen sind also
E.(7,t) = (A cos(kyx) + By sin(kjz)) sin(k;jy) sin(k.z — wt + ay),
B, (7,t) = sin(klx)(Ay cos(k)y) + By sin(kly)) sin(k.z — wt + ay)

(k# und k} sind quantisiert). Doch nun kommen die Maxwellschen Gleichungen
ins Spiel. So ergibt sich als erste Forderung

ox y 0z
= ki (—Aysin(kl) + By cos(kl)) sin(k;jy) sin(k.z —wt 4+ ay) +
+ k;j sin(kfz)(—A, sin(kgjy) + B, cos(k?jy)) sin(k.z —wt + ay) +
+ k. Eg sin(kpx) sin(kyy) cos(k.z — wt).
Der Vergleich der verschiedenen funktionalen Abhangigkeiten liefert a, = o =
7/2, ky = ki =k, k) = k) = k, und schliellich noch
kyAy + kyAy =k.Ey und B, =B, =0. (1.31)
Dies sind bereits erhebliche Vereinfachungen, es ist
E.(r,t) = Ay cos(kpx)sin(kyy) cos(k.z — wt),
E,(7,t) = Aysin(kyx) cos(kyy) cos(k.z — wt),
E.(7,t) = Egsin(kyx)sin(kyy) sin(k.z — wt).
A, und A, sind noch nicht bestimmt, doch soll uns dies vorerst nicht Etéren.
Wir er_l)rlalten das magnetische Feld durch Integration der Gleichung 0B /0t =
virot E,
wB, (7, t) = vz(kyEo + k. Ay)sin(kgx) cos(kyy) cos(k.z — wt),
wBy(r,t) = v?(—k. A, — k. Eo) cos(ky ) sin(kyy) cos(k.z — wt),
wB. (7, t) = vz(—kxAy + kyAy)cos(kyx)cos(kyy)sin(k.z — wt).
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Die Gleichung div B = 0 ist mit diesen Losungen trivial erfullt. Und wenn man
erneut die elektrischen Feldkomponenten tuber OFE /Ot = —rot B ausrechnet, so
ergibt sich im Vergleich mit den Ausdriicken, von denen wir ausgegangen sind
und unter Verwendung von Gleichung (1.30) nur noch einmal (1.31). Wir sind
also dazu gezwungen, eine der Komponenten des elektromagnetischen Feldes
auf Null zu setzen, und dies sind gerade die eingangs erwahnten TM- und

TE-Moden. Fir die TM-Mode setzen wir die Amplitude von B, auf Null,

kkaEo k szO
A, = A, = L
K24k Y k24 k]

Y

koA, =kyA, =

und erhalten

E, =E, k;fzz cos(kyx)sin(kyy) cos(k.z — wt),

E, =Ey Fyk: sin(kyx) cos(kyy) cos(k.z — wt)
k2 + k2 Y ’

E. = Eysin(kya)sin(kyy) sin(k.z — wt),

B, = E, Fy sin(kya) cos(kyy) cos(k.z — wt),
k4 k7

B, = —Eokxiw cos(kya)sin(kyy) cos(k.z — wt),

k:+k;
B. =0.

Obwohl wir in diesem Kapitel mit dem TM-Mode begonnen haben, lalt sich
der TE-Mode hier rekonstruieren. Dazu setzen wir wBg = vz(kyAx — kyAy)
und Ey = 0, also

k CUBO kaBO
hoAy £ ky A, = A, = tweBo oy FewBo
Thydy =0 = IR YT TRk 1 kD)

Es ergibt sich

By k
E, = U_;k% j_wkg cos(kyx)sin(kyy) cos(k.z — wt),
By k. ‘
E, = _U—2O = _|_wk§ sin(kyx) cos(kyy) cos(k.z — wt),
E. =0,
B.—_B ok, . (k) cos(yy) cos(h 0
v = Okf,—l—kgsm +2) cos(kyy) cos(k.z — wt),
y = ok%_l_kgcos +v)sin(kyy) cos(k.z — wt),

B. = By cos(kyx) cos(kyy)sin(k.z — wt).
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Prifson Frequenz-
Skala ufsonde messer%

[N

Mikrowellen-
generator

Abb. 1.5 Versuchsaufbau zur Ausmessung eines Hohlleiters

1.4.4 Versuch zum Hohlleiter

Wir wollen die Transmission eines Hohlleiters experimentell vermessen. Dazu
dient die Versuchsanordnung, die in Abbildung 1.5 gezeigt ist. Die elektroma-
gnetische Strahlung wird in einem Mikrowellengenerator erzeugt, ihre Frequenz
in einem Frequenzmesser gemessen. Der Hohlleiter ist am Ende abgeschlossen,
bildet also eine stehende Welle aus. Mit Hilfe einer Prufsonde wird nun die
Leistung der Hohlleiterstrahlung in Abhéangigkeit von der an der Skala abzu-
lesenden Lange entlang des Hohlleiters vermessen. Der Hohlleiter besitzt eine
Innenausdehnung von 2 x lem (genauer ist die doppelte Breite 44, 57mm), als
Frequenz kann 9116 MHz abgelesen werden. Wir erhalten

- be1l 118mm ein Maximum

bel 105.5mm ein Minimum

bel 93.5mm ein Maximum

bel 81.5mm ein Minimum und

- bel 70mm ein Maximum der Leistung.

Der Abstand zwischen Maximum und Minimum der Leistung entspricht
einem Wert A/4. Fiir die Wellenlédnge erhalten wir daher im Mittel A\ = 48mm.
Auf Seiten der Theorie ergibt sich aus der Frequenz fur den Mode TM;( ein
Wert Ao = 47.7mm, was sehr nahe unserem Meflergebnis ist.

1.5 Wellenausbreitung in Leitern

Wir haben in Abschnitt 1.3.2 den perfekten Leiter betrachtet. Reale Leiter las-
sen dagegen die elektromagnetische Strahlung in begrenztem Mafle eindringen.
Es gilt fur sie das Ohmsche Gesetz, das in differentieller Form die Gestalt

—

j=0-E (1.32)
besitzt. Setzt man dies in die Maxwellschen Gleichungen ein, so ergibt sich

. . B
div E =0, rotE:—aa—,
e (1.33)

divB =0, rot B = Eo0SHOH - + popoE
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und damit die Wellengleichung

OE OF
AE = socpop——m 52 + popo TR (1.34)

Diese Gleichung beschreibt eine Wellenausbreitung mit Dampfung. Wir besei-
tigen die Zeitabhangigkeit zunachst mit dem Ansatz E(r t) = E(F)e‘“"t und
erhalten

AE(F) + (soepopw® + iuouaw)E(F) = 0. (1.35)

Diese Gleichung wiederum wird mit dem Ansatz E(F) = EoeiE'F gelost und
liefert AE(F) + kzﬁ(F) — 0. Der Wellenvektor & ist fiir nichtverschwin-
dende Leitfahigkeit komplex. Fir einen guten Leiter, der durch o > egew
gekennzeichnet ist, 1a8t sich gar der erste Anteil zu k% in Gleichung (1.35)
vernachlassigen, es ergibt sich

k2 =ipopow = ™ ugpow =k = £\ ignow = +(1+0)pn

(0 := \/popow/2), wobei 1 in Richtung der Wellenausbreitung zeigt. Dies in
den Ansatz eingesetzt, ergibt sich die Losung

—

E(r,t) = Eq exp(ilg S —wt) = Eq exp(£i(l +0)pn -7 —iwt) =
= Ej exp(FOn - 7)exp(+ifni - 7 — iwt).

Der erste Exponentialfaktor beschreibt die Dampfung, der zweite die Wellen-
ausbreitung mit der Charakteristik 47 - 7 — wt. Es mag auf den ersten Blick
verwundern, dafl in beiden Fallen der erste Faktor fur eine Dampfung steht.
Beachtet man jedoch, dafl die Charakteristik (37 - ¥ — wt eine vorwértslaufende
und die Charakteristik —(7 - 7 — wt eine riickwértslaufende Welle beschreibt,
so féllt die Welle im Leiter in eben dieser Richtung ab. Die Eindringtiefe § der
Strahlung, auch Skindicke (,Hautdicke*) genannt, ist

1 2
0=—= )
g [opow

(1.36)

Kupfer der Leitfahigkeit o = 5.9 - 107 Q7 'm™! ist selbst bis in hochste Fre-
quenzbereiche hinein als guter Leiter anzusehen. Mit pg = 47 - 107" Vs/Am
und p ~ 5 ergibt sich

dcu(100Hz) ~ Tmm, dcu(100MHz) ~ Tum.

Der Skineffekt, also das Eindringen elektromagnetischer Strahlung in Leiter,
wird fur hohe Frequenzen geringer. In diesem Fall ist die Wellenausbreitung
also durch die Oberflache guter Leiter begrenzt. Daher gentigt ein Versilbern
der Oberflachen, um ein Eindringen hochfrequenter elektromagnetischer Strah-
lung in zu schutzende Bereiche zu verhindern.
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2. Lichtoptik

Im vergangenen Kapitel haben wir die Ausbreitung von elektromagnetischen
Wellen in homogenen Medien betrachtet. Interessanter wird die Ausbreitung
allerdings, wenn diese Medien inhomogen sind, also beispielsweise Spriinge in
der Dielektrizitat oder Permeabilitat aufweisen. In diesem Fall andert sich die
Richtung der Ausbreitung an diesen Grenzflachen. Die Ausbreitung der elek-
tromagnetischen Wellen setzen wir in diesem Kapitel mit dem anschaulichen
Begriff des Lichtes in Beziehung, wenngleich auch Radiowellen oder Strahlung
anderer, nicht sichtbarer Frequenzbereiche gemeint sein konnen.

2.1 Die Reflexions- und Brechungsgesetze

Fur die Lichtausbreitung existieren zwei verschiedene Modelle. Zum einen exi-
stiert naturlich weiterhin das Modell der Welle, vornehmlich der ebenen Welle,
das diese Ausbreitung beschreibt. Zum anderen kann die Ausbreitung aber
auch mit dem Begriff des Lichtstrahls beschrieben werden. Dieser Lichtstrahl
steht in gleicher Richtung zum Wellenvektor senkrecht auf den Wellenfronten.
Und zu jedem dieser Bilder gibt es ein Prinzip, welches die Lichtausbreitung
beschreibt. Diese Prinzipien sollen den Anfang dieses Abschnitts bilden, bevor
die gemeinsamen Ergebnisse in Reflexions- und Brechungsgesetzen munden.

2.1.1 Huygenssches Prinzip

Das Huygenssche Prinzip, benannt nach den niederlandischen Physiker und
Astronomen Christian Huygens (1629-1695), geht vom Wellencharakter des
Lichtes aus. Genauer beschreibt es die Ausbreitung einer ebenen Welle als
einen Prozef}, in dem die einzelnen Punkte einer Wellenfront in jedem Mo-
ment im Medium Kugelwellen, die Huygensschen Elementarwellen, erzeugen,
die sich ausbreiten und schliellich zu der Wellenfront tiberlagern, wie sie eine
Zeitspanne spater erscheint. In einem homogenen Medium ist die so erzeugte
Wellenfront parallel zur urspringlichen, da die Ausbreitungsgeschwindigkeit
aller Elementarwellen gleich ist, und damit die Ausbreitungsrichtung erhalten.
Das andert sich, wenn die Homogenitéat nicht mehr gegeben ist.

In Abbildung 2.1 betrachten wir eine
ebene Welle, die mit einem FEinfallwinkel
oy auf eine Grenzflache trifft. Zum Zeit-
punkt ¢ = 0 treffe die Welle im Punkt A die
Grenzflache. Der Punkt B der Wellenfront
erreicht die Grenzflache im Punkt B’ zu ei-
nem spateren Zeitpunkt Af. Dieser steht
mit der Ausbreitungsgeschwindigkeit v, des
Lichtes im ersten Medium in Beziehung,

v At = dsin aq,

Abb. 2.1 Huygenssches Prinzip
wobei d die Entfernung zwischen A und B’ sei. In dieser Zeit hat sich jedoch
vom Punkt A eine Elementarwelle gelost. Die Geschwindigkeit vy im zweiten
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Medium ist eine andere, daher legt sie in der Zeit At die Strecke vy At zuruck.
Zusammen mit der gerade im Punkt B’ erzeugten Elementarwelle und allen
anderen Elementarwellen zwischen diesen Punkten bildet sie eine ebene Welle
aus, und der Ausfallwinkel ay ist gegeben durch

dsin oy = ve At.

Aus diesen beiden Gleichungen erhalt man schliellich

sin o v

sinay  vg
Zugleich macht Abbildung 2.1 deutlich, dal von A aus eine Kugelwelle ins
bisherige Medium zuricklauft. Diese hat dieselbe Geschwindigkeit wie bisher
und errichtet nach der Zeit At auf der Grenzflache ein Dreieck desselben An-
stellwinkels. Daher wird in das selbe Medium eine ebene Welle ausgesandt,
deren Austrittswinkel gleich dem Eintrittswinkel ist, a3 = a1. Die beiden hier
beschriebenen Phanomene sind bestens bekannt als Brechung und Reflezion.

2.1.2 Fermatsches Prinzip

Das Fermatsche Prinzip (Pierre de Fermat, 1601-1665, frz. Mathematiker) be-
nutzt das Bild des Lichtstrahles und stellt die Behauptung auf, daf3 sich dieser
Lichtstrahl stets den Weg wahlt, auf dem er die kiirzeste Zeit braucht. Ist das
infinitesimale Wegelement durch ds und das ininitesimale Zeitintervall durch
dt gegeben, so stehen beide uber ds = v dt in Beziehung. Zu Minimieren ist

also die Gesamtzeit
t(F2) P
/ ﬁ:/ s
t(Py) p v

Unter der Annahme, dafl sich ansonsten das Licht geradlinig ausbreitet, ver-
einfachen wir das ansonsten recht komplizierte Variationsprinzip durch die

Einfithrung eines einzigen Parameters.

Die Grenzflache sei in beiden Fallen
durch die z-Achse geben, wie in Abbil-
dung 2.2 gezeigt. Wir beginnen hier mit der Yy
Reflexion und betrachten einen Lichtstrahl,
der von einem Punkt P; = (x1,y) zu einem
Punkt P, = (22,y) gelangen soll, wobei er
die Grenzflache in einem Punkt Py = (z,0)
bertihre. z ist der eingefuhrte Parameter,
bezuglich dessen das Integral zu minimie-
ren ist. Dieses Integral ist hier sofort aus-
zufihren, da die Geschwindigkeit konstant
ist

’ Abb. 2.2 Fermatsches Prinzip

P-

2 d

1j‘fzﬂﬂﬁWHmﬁw=WWWN+f+W@—W+ﬁ
P



K. Kleinknecht, E. Reya ....... ..., Seite 21

Diese Funktion nimmt ihr Minimum fiir @ = (21 4+ 22)/2, also genau zwischen
den Projektionen der beiden Punkte an. Damit ist klar, dafl der Einfall- gleich
dem Ausfallwinkel ist.

Fiir den Ubergang in ein anderes Medium wihlen wir einen Punkt Ps =
(x2,—y) und lassen das Licht erneut bei P; starten und bei Py die Grenzflache
treffen. Dieser Punkt wird nun natiirlich ein anderer sein. Das Integral lafit
sich hier in zwei Anteile zerlegen,

P.
2d Py, P Py, P 1 1
/ _3:3(1 0)_|_8(0 2):U—\/($—$1)2+y2—|—v—\/(:1?2—:1:)2+y2.
1 2

P, v U1 (%]

Dieser Ausdruck ergibt, abgeleitet nach x, die Forderung

r — . 9 — &
Ul\/(l’—l'l)z—l-yz Uz\/(ﬂlfz—:Jl?)z—l-yz7
fiir die Minimalitat, was nichts anderes als sinay /vy = sinas /vy ist. Damit

haben wir auch hier ein zum Resultat des ersten Prinzipes identisches Ge-
setz hergeleitet. Das Fermatsche Prinzip lafit sich tbrigens auf komplizierte
Anordnungen als ganze anwenden, was beim Huygensschen Prinzip zumindest
schwierig ware.

2.1.3 Snelliussches Brechungsgesetz

Wir haben sowohl uber das Hygenssche als auch iber das Fermatsche Prin-
zip eine Beziehung zwischen Ein- und Ausfallwinkel erhalten. Fur die Refle-
xion ist diese einfach die Tatsache, dal der Einfall- gleich dem Ausfallwinkel
ist. Fur die Brechung kommt die Ausbreitungsgeschwindigkeit des Lichtes in
den verschiedenen Medien mit ins Spiel. Um hier statt den unanschaulichen
Geschwindigkeiten eine dimensionslose Grofle zu haben, die zudem noch sinn-
voll normiert ist, fithren wir den Brechungsindex n = c¢/v ein, der angibt,
um welchen Faktor die Wellengeschwindigkeit im Medium kleiner ist als die
Lichtgeschwindigkeit im Vakuum. Mit diesem Brechungsindex konnen wir das
Snelliussche Brechungsgesetz

n - sin o« = konstant (2.1)

aufstellen. Ubrigens wurde dieses Gesetz erst posthum im Nachlaf des nie-
derlandischen Mathematikers Willebrord van Royen Snell (1580-1621) ent-
deckt. Es bildet die Grundlage der Refraktaroptik, also des Zweiges der Op-
tik, der sich mit der Lichtbrechung befafit. Es gilt strenggenommen nur fur
ebene Grenzflachen. Doch kann man die meisten in der Praxis vorkommenden
Grenzflachen wie die Oberflachen von Linsen als lokal hinreichend eben anse-
hen, so dafl dieses Gesetz zur Geltung kommen kann. Wir machen davon im
kommenden Abschnitt bereits Gebrauch und verabschieden uns mit der dort
betrachteten Polarisation zugleich endgiltig vom explizit elektromagnetischen

Charakter des Lichtes.
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2.2 Polarisation und Totalreflexion

Zunachst stellt sich wieder einmal die Frage, was die Stetigkeitsbedingungen fur
das elektrische und magnetische Feld beim U'bergang durch eine Grenzflache
sind. Diese Grenzflache ist hier ein Nichtleiter, der weder freie Ladungen noch
Strome aufweist. Es gelten daher die quellenfreien Maxwellschen Gleichungen

_ . B
divD =0, rotE:—aa—,
; ot (2.2)
divéz(), rotﬁ:—D.
ot

Legen wir, wie bereits mehrfach praktiziert,* in Gedanken eine flache Dose
in die Grenzflache, so ergeben die beiden linken Gleichungen, daf§ die Nor-
malkomponenten der Felder D und B beim Durchgang durch die Grenzflache
stetig sind. Der flache Rechteckweg durch die Grenzflache hingegen liefert mit
den beiden rechten Gleichungen die Stetigkeit der Tangentialkomponenten von
H und E. Als zusitzliche Vereinfachung sei die Dielektrizitat ¢ der aneinan-
derstoflenden Medien zeitlich und raumlich konstant, die Permeabilitat p = 1.
Dann gilt

e1E11 =& Fi12, Ej =FEp, Bii=Bi» und Bj = B).

Das magnetische Feld geht also stetig durch die Grenzflache. Es ist tber die
Maxwellschen Gleichungen mit dem elektrischen Feld gekoppelt, auf das im
folgenden die Betrachtungen zurtickgefithrt werden sollen.

2.2.1 Die Fresnelschen Formeln

Das elektromagnetische Feld im Nichtleiter steht senkrecht auf der Ausbrei-
tungsrichtung, welche anschaulich durch die Richtung des Lichtstrahls gegeben
ist. Die relative Orientierung zwischen einfallendem (a), gebrochenem (b) und
reflektiertem Strahl (r) ist durch das Snelliussche Brechungsgesetz bzw. das
Reflexionsgesetz gegeben. Alle drei Strahlen liegen in einer Ebene senkrecht
zur Grenzschicht, die nattrlich fur senkrechten Einfall nicht eindeutig ist.

Um die eben aufgestellten Grenzbe-
dingungen anwenden zu konnen, zerlegen
wir das elektrische Feld fur jeden dieser
drei Strahlen in eine Normalkomponente
EVN senkrecht zu dieser Ebene und eine
Transversalkomponente ET, die in dieser
Ebene senkrecht zur Ausbreitungsrichtung
weist. Wellenvektor, Transversal- und Nor-
malkomponente sollen in dieser Reihenfolge
ein Rechtssystem bilden, die Situation ist in

Abbildung 2.3 dargestellt. Es ergibt sich

Abb. 2.3 Polarisationsbeziehungen

* vgl. dazu Abschnitt 1.3.2.
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Eév + E,],V = Eév und EZ cos ay — E;‘,F cosqy = E;‘F COS Qg (2.3)
fur die Anteile parallel zur Grenzflache und
51(EZ sinoq + E;‘,F sinog ) = 52E;‘F sin oy (2.4)
fur denjenigen senkrecht dazu. Verwendet man noch

E_\/a_U_Q_SiIlOéQ (2.5)

. ’
%) \/E2 U1 S1I11 (Vg

so ergibt sich

EN + EN =E), (ET —El)cosa, = El cos s,

(EZ + E;‘,F) sinag = E;‘F sin o . (2.6)

Diese drei Gleichungen sind zunéachst einmal vom Ort und von zwei der drei
Ortskoordinaten (beispielsweise @ und y) abhéngig, wobei die dritte (also z)
durch die Grenzflache als z = 0 festgelegt ist. Diese Abhangigkeit ist aber nur
eine stationare, und verwenden wir den komplexen Ansatz

Ei = E? exp(i(wit — k;l‘ - k;y))v NS {a,b,r}

so ergibt sich, da die Gleichungen an allen Punkten der Grenzflache und zu
allen Zeiten erfullt sein soll, die Gleichheit der entsprechenden Kreisfrequenzen
und Wellenvektorkomponenten,

wo=wp=w, =w, ki=kl=kl=k und kl=4k) =k =k, (27
(jedoch nicht fiir die Komponenten k%). Die Gleichungen (2.6) behalten dabei
dieselbe Form, egal ob dabei die orts- und zeitabhangigen Feldkomponenten
oder deren Amplituden gemeint sind. Wir wollen im folgenden letzteres anneh-

men. Zu den U'bergangsgleichungen fur das elektrische Feld treten diejenigen
fur das magnetische Feld,

BY + BY =B, (Bl = B')cosa, = B/ cosa,
(BF + BT sina; = Bl sinay (2.8)

(man beachte den formalen Unterschied der jeweils letzten Gleichungen in (2.6)
und (2.8)). Dabei seien die gleichen Konventionen wie in Abbildung 2.3 ge-
troffen. Diese Gleichungen fur das magnetische Feld lassen sich auf das elek-
trische Feld ubertragen, denn aus der homogenen Maxwellschen Gleichung

rot E = —9B /0t ergibt sich fiir die Amplituden (i € {a,b,r})

kxE=-wB = kEN=wBl wd kEl=-wB\, (2.9)
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und tiber w = kyvy sowie mit Hilfe der Beziehung (2.5)

(EF' + ENsinay = Ef sinay, (2.10)
(EN —ENYtanay = E tana,, EY + EYN = E}.

Zwei der sechs Gleichungen aus (2.6) und (2.10) sind redundant, die anderen
reichen aber aus, um die Feldkomponenten des reflektierten und gebrochenen
Strahls in Abhangigkeit derjenigen des einfallenden Strahls zu bestimmen. Tri-
gonometrische Umformungen fithren auf

B - 2 sin g cos ay ET ET = Mﬂﬁ
sin(aq + az) cos(ay — ag) tan(a + a2) (2.11)
gy = 2moscosar py gy silon —aa) py
sin(aq + a2) sin(ag + az)

Diese Formeln sind als Fresnelsche Formeln bekannt (Augustin Jean Fresnel,
frz. Physiker, 1788-1827). Sie kennzeichnen das Reflezionsvermdgen r und die
Durchlassigkeit d gemaf

S| |E? Sol  |E)?
r = |_) | — |_} | , d: |_)_b| — |_)b| . (212)
Sl [Eal? Sl [Eal?

2.2.2 Der Brewsterwinkel

Die Fresnelschen Formeln weisen eine Besonderheit auf, die hier genauer be-
trachtet werden soll. Da die Winkel a; und a5 tiber das Snelliussche Brechungs-
gesetz miteinander verbunden sind, ist der Proportionalitatsfaktor zwischen
den Feldkomponenten eigentlich nur eine Funktion eines der beiden Winkel,
beispielsweise des Einfallwinkels. Tragt man nun das Reflexionsvermogen eines
parallel zur Grenzflache polarisierten Strahls gegen diesen Winkel auf, so fin-
det sich ein Wert, bei dem dieses Reflexionsvermogen verschwindet, also kein
Strahl reflektiert wird. Entsprechend ,iberlebt® bei diesem Winkel nur die Po-
larisationsrichtung in der zur Grenzflache senkrechten Ebene. Dies findet sich
auch in den Fresnelschen Formeln wieder. Es ist der Fall a; 4+ as = 90°, bei
dem der Tangens unendlich, sein Kehrwert aber zu Null wird. Und es ist wegen
a1 # ag auch die einzige Stelle, an der einer dieser Koeffizienten verschwindet.

aq + ay = 90° heifit, daB reflektierter und gebrochener Strahl aufeinander
senkrecht stehen. Der Wert fir den Winkel oy wird als nach dem englischen
Physiker Sir David Brewster (1781-1868) als Brewsterwinkel bezeichnet und
ergibt sich aus
9 sin o sin o sin o

ny  sinas  sin(900 —aq)  cosay ane ( )

Fiir ny = 1 und ny = 1.5 erhalt man o ~ 56°, der Winkel nahert sich fiir kleine
Unterschiede im Brechungsindex dem Wert 45°. Licht, das mit dem Brewster-
winkel auf eine entsprechende Grenzflache fallt, lafit sich polarisieren. Dies
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kommt auch in der Natur beim Auftreffen von Sonnenlicht auf unterschied-
lich dichte Luftschichten vor. Das senkrecht zur Sonnenstrahlung reflektierte
Licht ist polarisiert, und Bienen konnen dieses wahrnehmen. Die entsprechen-
den Punkte am Himmel werden Aragoscher und Babinetscher Punkt genannt

(Dominique Frangois Arago (1786-1853) und Jacques Babinet (1794-1872),
franzosische Physiker).

Abbildung 2.4 zeigt einen Versuch zum

Brewsterwinkel, und in der folgenden Ta- :
reflektiert

belle sind Brewsterwinkel ap fiir einige Ma- | ~ | ﬁpolarisiert

terialien aufgefithrt, fiir die beiden ersten im | — O
sichtbaren, fir die letzten beiden im Infra-

. transmittiert
rotbereich des Spektrums.

‘ Stoff‘ n ‘ ap ‘ H
Wasser | 1.33 | 53°
Schwerflint | 1.75 | 60°
Schwefel | 2.0 |67°
Selen |2.4 |67°

Tab. 2.1 Brewsterwinkel fiir verschiedene Materialien Abb. 2.4 Versuch zum Brewsterwinkel

2.2.3 Senkrechter Einfall

Aus den Fresnelschen Formeln ergibt sich im Grenzfall oy — 0 und damit
niai /& ngagy recht schnell das Reflexionsvermogen und die Durchlassigkeit, die
hier fur beide Polarisationsrichtungen jeweils gleich sind,

(n2 —n1)? (2n1)?

== d= ——2 2.14
' (ny 4+ nq)? (ny +nq)? ( )

Fir den U'bergang von Glas zu Luft (wie auch im umgekehrten Fall) ist das
Reflexionsvermogen sehr klein, » ~ 0.04. An den beiden Grenzflachen einer
Glasscheibe zusammen wird also nur 8% des einfallenden Lichtes reflektiert.

2.2.4 Totalreflexion

Fiir den Ubergang vom dichteren zum diinneren Medium erhilt man einen
weiteren Effekt. Ist ny > ng, so ergibt das Snelliussche Brechungsgesetz einen

Mazimalwinkel o*** mit
sin(a™) = "2 (2.15)
nj
bei dem sinas = 1 wird und oberhalb dessen ein gebrochener Strahl nicht

mehr existiert. Wir sprechen von der Totalreflexion, der Grenzwinkel ist fur
den U'bergang von Glas zu Luft 42°. Dennoch ist auch fiir grofiere Winkel in
der Néahe des U'bertrittspunktes noch ein elektromagnetisches Feld vorhanden,
das allerdings exponentiell abfallt. Setzen wir die Aufspaltung

kx:|z|sina2, kZ:|E|cosa2:|E| 1 — sin® ay, |E|:Ui
2
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zu Werten sinag > 1 hin fort, so ergibt sich eine rein imaginare Wellenvektor-
komponente k., und damit aus dem stationdren Ansatz

Ey, = EY expli(wt — kb — kP2)) = E? exp(i(wt — k2x))exp(—z/L),

wobel
V2 n2 /\2

L= = (2.16)

wy/sin’ ay — 1 277\/(711)2 sin® o — (ng)?

die Eindringtiefe zur Wellenlange Ay des Lichtes im dtinneren Medium ist. Daf
ein solches exponentiell abfallendes Feld existiert, zeigt sich, wenn man dicht
neben die total reflektierende Glasplatte eine zweite legt. Der (abgeschwichte)
Strahl setzt sich in dieser Platte in derselben Richtung fort. Es handelt sich
hierbei um die optische Auspragung des Tunneleffekts der Quantenmechanik.

90 \

Abb. 2.5 Brewsterwinkel (links), Totalreflexion und Tunneleffekt

2.2.5 Linear- und Zirkularpolarisation

Polarisiertes Licht, wie es im Brewsterschen Experiment erzeugt wurde, behalt
seine Polarisationsebene bei. Das liegt daran, dafl die beiden Feldkomponenten
senkrecht zur Ausbreitungsrichtung in Phase sind, wobei die beiden Amplitu-
den lediglich kennzeichnen, wie die Polarisationsebene relativ zu den Achsen
liegt. Licht dieser Art heiflt linear polarisiert. Ist jedoch eine der beiden Kom-
ponenten gegen die andere um eine Phase 7/2 verschoben, so bewegt sich der
Polarisationsvektor auf einer Helixbahn, wir sprechen von zirkular polarisier-
tem Licht. So steht in

E = E, <Ex cos(kz — wt) + €, cos(kz —wt + 77/2))

Das ,,+“ fiir rechtszirkulares und das ,,—* fur linkszirkulares Licht. Phasen-
spriinge kénnen an bedampften Glésern auftreten. Eine \/2-Platte besitzt eine
Achse, in deren Richtung ein Phasensprung von A/2 (daher der Name) auftritt,
also besitzen zwei Komponenten, die vorher in Phase waren, danach eine Pha-
sendifferenz von 7. Die Polarisationsebene von linear polarisiertem Licht wird
so um 90° gedreht. Bei einer \/4-Platte entsteht nur eine Phasendifferenz von
7/2, linear polarisiertes Licht verwandelt sich in zirkular polarisiertes.
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2.2.6 Doppelbrechung

Doppelbrechung entsteht in Kristallen, die je nach Lichtausbreitung einen un-
terschiedlichen Brechungsindex besitzen, also ein anisotropes Brechungsverhal-
ten ausweisen. In der Natur kommt dies beispielsweise beim Kalkspat (CaCOs)
vor. Aber auch isotrope Materialien wie Plexiglas lassen sich durch auflere
Einfliisse (wie Druck, Biegung, ein Temperaturgradient oder elektrische Felder)
anisotrop machen. Dies wird umgekehrt in der Materialprufung verwendet, um
Spannungen sichtbar zu machen. Diese Anisotropie ist anhangig von der Po-
larisationsrichtung des Lichtes. So ist fur die eine Polarisationsrichtung eine
Isotropie des Brechungsindex vorhanden, wahrend sie fiir die dazu senkrechte
davon abweicht. Das Licht setzt sich, wie noch zu zeigen sein wird, entspre-
chend in zwei linear polarisierten Strahlen fort, wobei ersterer als ordentlicher
(0), letzterer als auflerordentlicher Strahl (e) bezeichnet wird.

Entlang der optischen Achse sind beide Brechnungsindizes gleich, dort
findet keine Aufspaltung des Strahls statt. Die grofite Abweichung ergibt sich
dagegen senkrecht zu dieser Achse. Ist n, der Brechungsindex fiir den ordent-
lichen Strahl und v, die zugehorige Ausbreitungsgeschwindigkeit, so verandert
sich die Ausbreitungsgeschwindigkeit v, fur den aulerordentlichen Strahl von
v, entlang der optischen Achse in v} entlang einer Richtung senkrecht dazu.
Fur v} < v, sprechen wir von einem positiv doppelbrechenden, fur v} > v, von
einem negativ doppelbrechenden Kristall.

Vielleicht wird das Verhalten am deut-
lichsten, wenn man sich die Lichtausbrei- optische Achse

%

tung wie im Huygensschen Prinzip wie-
der aus Elementarwellen zusammengesetzt
denkt. Fur den ordentlichen Strahl sind dies
Kugelwellen, fur den aulerordentlichen da-
gegen Ellipsoide mit der optischen Achse als
Symmetrieachse. Abbildung 2.6 zeigt das
Konstruktionsprinzip fur die beiden Strahl-
richtungen.

Abb. 2.6 Prinzip der Doppelbrechung

Ein Kalkspatkristall ist wie ein Parallelotop gebaut. Daher ergibt sich
beim Austritt aus dem Kristall der umgekehrte Vorgang. Die beiden Strahlen
treten also parallel, aber versetzt aus dem Kristall aus. Dies ist auch der Grund,
warum ein doppelbrechender Kristall zwei je nach Blickrichtung gegeneinander
verschobene Kopien der Unterlage erkennen laflt, auf der er liegt.

Es gibt, das sei hier nur kurz angesprochen, dartuber hinaus noch Pola-
risationseffekte bei einigen chemischen Verbindungen. So besitzen spezielle
Fruchtzuckerarten ein unterschiedliches Brechungsverhalten, je nachdem, ob
das einfallende Licht rechts- oder linkszirkular polarisiert ist.
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2.3 Geometrische Optik

Die geometrische Optik verwendet fur die
Lichtausbreitung das Bild des Lichtstrahls.
Dieser wird an Grenzflachen gespiegelt und
gebrochen und durchquert den homogenen
Raum zwischen den Grenzflachen geradli-
nig. FEin Beispiel fur einen nichthomoge-
nen Raum sei an dieser Stelle als Versuch
anbei gestellt: Die Ausbreitung eines Laser-
strahls in einer Kochsalzlosung, die nach un-
ten hin dichter wird. Bei ortlich variablem
Brechungsindex erkennt man deutlich einen

gekrummten Lichtstrahl. Abb. 2.7 Ortlich variabler Brechungsindex

Laser

2.3.1 Der Hohlspiegel

Die geometrische Optik einer spiegelnden Flache ist am einfachsten zu behan-
deln, muf3 hier doch nur berticksichtigt werden, dafl Ein- und Ausfallwinkel
denselben Wert besitzen. Anhand von Abbildung 2.8 (links) sollen zunéchst
die wichtigsten Bezugspunkte bei der Reflexion an einem spharischen Hohlspie-
gel betrachtet werden. Da ist zunachst einmal der Mittelpunkt M der Kugel-
schale. Durch ihn verlauft die Hauptachse, und dort, wo sie den Spiegel trifft,
findet sich der Scheitelpunkt S. Ein zur Hauptachse paralleler Strahl treffe
den Spiegel im Auftreffpunkt A. Nach der Reflexion kreuzt er die Hauptachse
im Brennpunkt oder Fokus F. Die Brennweite f schliellich ist der Abstand
zwischen Scheitel- und Brennpunkt.

Hauptachse

Abb. 2.8 Reflexion eines Parallelstrahls (links) und eines Punktstrahls (rechts). In der Mitte ist
die Katakaustik fiir einen spharischen Hohlspiegel dargestellt

Wir betrachten den Parallelstrahl und seine Reflexion, wie sie in Abbildung 2.8
links dargestellt sind, um eine Beziehung zwischen Radius r (also dem Abstand
zwischen M und S bzw. A) und der Brennweite herzustellen. Aus trigonome-
trischen Uberlegungen folgt, da sich der Winkel o sowohl im Winkel MAF als
auch in AMF wiederfindet, die Gleichschenkligkeit des Dreiecks AMFE. Es ist
dann

MA r

2cos 2cos«

MF =FA=

und h = rsina.
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Fur paraziale Strahlen, also solche nahe der Hauptachse, ist i < r und damit «
klein. Die Naherung cos o & 1 gentigt fiir diese Zwecke, man erhalt MF = r/2
und damit

f:F—S:r_W:; (2.17)

Fir achsenferne Strahlen dagegen erhalt man die sphdrische Aberration, die
sich dadurch bemerkbar macht, dafl sich Parallelstrahlen nach der Reflexion
nicht im Brennpunkt sammeln, sondern naher zum Scheitelpunkt ricken, je
achsenferner der Parallelstrahl ist. Die Einhtllende dieser Strahlenschar, die
bei einem Strahlenbiindel sichtbar wird, wird als Katakaustik bezeichnet. Sie
ist in Abbildung 2.8 in der Mitte dargestellt. Die spharische Aberration lafit
sich vermeiden, wenn man statt des spharischen einen parabolischen Spiegel
verwendet.

Wo trifft ein von einem Punkt der Gegenstandsebene, dem Gegenstands-
punkt G ausgehender Strahl nach der Reflexion die optische Achse? Um dieser
Frage nachzugehen, betrachten wir den rechten Teil der Abbildung 2.8. Der
betreffende Punkt, welcher die Bildebene markiert, sei mit B bezeichnet. Dann
ergibt sich aus dem Sinussatz, angewendet auf die Dreiecke GAM bzw. BAM

MG  |sina]  sina  MB
AG | sin(w — )| ~ sin3 AB’

Betrachten wir erneut paraxiale Strahlen, so ist AG ~ SG = ¢ die Gegen-
standsweite und AB ~ SB = b die Bildweite, beide vom Scheitelpunkt aus
gemessen. Folglich ist mit f = r/2

g—r_r—b
g b 7

(2.18)

Q|+
S| =
|

Diese Gleichung ist die Abbildungsgleichung,
eine der Grundgleichungen der geometri-
schen Optik, die auch spater bei der Lin-
senbrechung zum Tragen kommt. Verwen-

. . Parallelstrahl
det man die Grofien /

Scheitelstrahl

r:=¢g—f und 2’ :=0-f, |\/|‘ @

so ergibt sich eine andere Form, die auf Isaac W
. . o Mittetpunktstrahl
Newton zurtickgeht und in manchen Fallen

praktischer ist,

zr' = f2. (2.19)

Abb. 2.9 Konstruktion des Bildes
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Die Konstruktion des Bildes eines Gegenstandes, welcher sich tber die
Hauptachse erhebt, 1a3t sich geometrisch mit Hilfe der folgenden vier Strahlen
und ihrer Reflexionswege vollziehen:

- der Parallelstrahl geht nachher durch den Brennpunkt
- der Muttelpunktstrahl lauft denselben Weg zurtick

- der Brennstrahl verlalt den Spiegel parallel, und

- der Scheitelstrahl verlauft symmetrisch zur Hauptachse.

Gegenstandsweite Bildweite Vergroflerung
oo >ax > f (co>g>2f) O<a' <f (f<b<2f) 0>v>—1

v=f (9=2f) v =f (b=2f) v=-1
f>ae>0 2f>g>f)] f<a'<oo 2f<b<ox) |-1>v>-x
0>a>—f (f>g>0)|—co<a’' <—f(—00<b<0)| co>v>1

Tab. 2.2 Beziehung zwischen Gegenstandsweite, Bildweite und Vergréfierung

Mit Hilfe dreier der vier Strahlen (eigentlich geniigen nur zwei) ist die Kon-
struktion des Bildes in Abbildung 2.9 durchgefuihrt. Als Gegenstand halt ein
einfacher Pfeil her, zu dessen Spitze G' der Bildpunkt B’ konstruiert wird. Die
Lateralvergroferung, also die Vergroflerung bezuiglich der Hohe des Gegenstan-
des, ist
!/

po BB b F S (2.20)

GG’ g g—Ff x

wobei zur ersten Gleichheit der Strahlensatz fur den Scheitelstrahl, fir die
zweite Gleichheit die Abbildungsgleichung in der Form b = ¢f/(¢g — f) und
zur dritten Gleichheit die Newtonsche Schreibweise verwendet wurde. Aus
den Gleichungen (2.19) und (2.20) ergibt sich die obenstehende Tabelle 2.2,
wobei die Félle (bis auf den zum ersten symmetrischen dritten Fall) auch in
Abbildung 2.10 geometrisch dargestellt sind. Die ersten drei Falle liefern ein
reelles, auf dem Kopf stehendes Bild, also eines, welches sich vor dem Spiegel
wiederfindet. Der letzte Fall ergibt ein virtuelles, aufrecht stehendes Bild, das
sich aus der Verlangerung der Strahlen hinter den Spiegel ergibt.

S\

AT NI
M\LFS M 'F s YFS

Abb. 2.10 Bildkonstruktion fiir ¢ > 2f (links), ¢ = 2f (Mitte) und g < [ (rechts)
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2.3.2 Die Linse

Auch fur die optische Linse gehen wir von
einer spharischen Oberflache aus, welche
von paraxialen Strahlen getroffen wird. Zu
Beginn steht jedoch eine rein geometrische
Vortiberlegung, welche die Abweichung der
Hypothenuse von der Ankathete bei kleinen | d
Offnungswinkeln bestimmt.

Abb. 2.11 geometrische Voriiberlegung
In Abbildung 2.11 ist nach dem Satz des Pythagoras

h2:32_d2:(3_d)(3_|_d)

und damit fur A < s
h? h?

s+ d %

s—d=

Eine einfache Linse setzt sich aus zweil sphérischen Oberflachen zusammen.
Doch bevor wir eine solche Linse konstruieren, bestimmen wir das optische
Verhalten einer spharischen Oberflache selbst. Dazu betrachten wir die Situa-
tion, die in Abbildung 2.12 dargestellt ist, fur paraxiale Strahlen.

Bereich mit Bereich mit
Brechungsindexnq Brechungsindexno

Abb. 2.12 Brechungsverhalten einer konvexen spharischen Oberflache

Ist s = GA, s’ = AG', h = AB und r = MA = MS der Radius der Sphire, so

ergibt sich nach den eben angestellten geometrischen U'berlegungen zunachst

2 2 2

— _— h - —  h
GA=GB+ —, AG =BG+ — sowie SG'=BG + —.
2s 2s! 2r

Um nun eine Beziehung zwischen den auftretenden Langen, also vor allem
zwischen s und s’ zu erhalten, benutzen wir das Fermatsche Prinzip. Diesem
Prinzip nach muf} das Licht flir den Weg GAG' dieselbe Zeit bendtigen wie
fir GBG'. Besitzt der Brechungsindex links der sphérischen Grenzfliche in
Abbildung 2.12 den Wert n; und rechts davon ns, so ist das Fermatsche Prinzip,
in Formeln gefaft,

nlm + TLQAG/ = nlﬁ + TLQW = nl(GB + BG/ — SG/) + TLQW

- h2 - h2 - h2 - h2
= ni GB + — + no BG' + — =nq GB — — + no BG + —
2s 2s 2r 2r
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h2 h2 h2 h2
S Mot g g = gt nags
o Mgz (mom) (2.21)
S S T

Da s und s’ fiir paraxiale Strahlen mit der Gegenstands- und Bildweite iden-
tisch sind, kann die rechte Seite so etwas wie eine inverse Brennweite sein.
Doch bevor wir nun auch das Brechungsverhalten einer Linse mit zwei solchen
spharischen Oberflachen bestimmen, bauen wir sie besser aus diesen beiden Ele-
menten auf und benutzen dazu ein Schema, das auch im weiteren sehr nutzlich
sein wird, das Schema der Matrizschreibweise einer Abbildunyg.

2.3.3 Matrixschreibweise der Abbildung

Der ein- und ausgehende Strahl in Abbildung 2.12 sind {iber die Relation (2.21)
aneinander gekoppelt. Die Strahlen werden durch die Geraden

hz
yi(z)=h+ - und  ya(z) =h — "
miteinander in Beziehung gesetzt, wobei der Ursprung z = 0 auf die Grenzflache
gesetzt wird (alles natiirlich flir paraxiale Strahlen, fiir welche die Punkte B
und S {ber diesem Ursprung zu liegen kommen). Am Ursprung ergibt sich
einerseits klarerweise y1(0) = y2(0), andererseits aber fiir die Steigungen

h hineg —n h
nzyé(o) = —”15 = —% + nlg = (”1 - nz)yjl + nly{(()).

In Matrixform geschrieben, lauten diese beiden Gleichungen

(zgg;) B ((m —rlcz)/nlr nl(/)n2> (5;28;) : (2.22)

Wird eine zweite Grenzflache hinter die erste gesetzt, so sind Achsenabstand
und Steigung erneut durch eine solche Matrix beschreibbar. Das Hinterein-
anderlegen der Oberflachen entspricht daher der Matrixmultiplikation. Dies
werden wir gleich sehen. Ist die zweite Grenzflache eine nach rechts gewolbte
Sphare mit gleichem Krummungsradius, die vom Medium mit Brechungsindex
no zuriick in das Medium mit Brechungsindex rny zurtckfihrt, so ergibt sich die
entsprechende Abbildungsgleichung aus der ersten formal durch Vertauschung
von n; und ny und Ersetzung von r durch —r. Die Brennweite bleibt also
dieselbe, was auch anschaulich klar ist. Wir erhalten

(50) = (o = o) (10)) =
- ((m —:Ll)/nzr nz(/)m) ((m —il)/nlr nl(/)n2>

N (2(n1 —}12)/”17“ (1)> (ziggg - <—1l/f (1)> (g

—_~
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f ist nun in der Tat die Brennweite dieser als flach angenommenen Linse,
denn aus der Beziehung zwischen den Geradensteigungen im Medium mit dem
einheitlichen Brechungsindex n; hebt sich diese heraus, und man erhalt die
Abbildungs- oder Linsengleichung

_l B nyr
B f_(nz—nl)'

1
+ S (2.23)

1
g
Bei einer dicken Linse ist noch eine Driftstrecke zu bertcksichtigen, in der

sich das Licht einfach geradlinig ohne Brechung ausbreitet. Diese Driftstrecke
besitzt die Matrixschreibweise

<(1) f) (L ist die Lange der Driftstrecke), (2.24)

wie man sich leicht iberzeugt. Die Matrix fur die dicke Linse ist folglich

<(n1 —rlbz)/nlr nz(/)m) ((1) ?) <(n1 —rlbz)/nzr nl(/)n2> -

_ 1+ (n1 —ng)L/ngr naL/ny _
(n1 —n2)?L/ningr? 4+ 2(n1 — n2)/nir 1+ (ny —ng)L/nar
{14 (n1 —n2)L/ner nyL/ng
2(ny —ne)/nar L+ (n1 —ng)L/ngr )’

wobel im letzten Schritt die Naherung L < f verwendet wurde. Bezeichnen wir
schlieBllich mit L' := ny L/ny die effektive Driftlinge, so ergibt sich die Matrix

1—L'/2f L
( Iy 1_L,/2f>. (2.25)

2.3.4 Bezeichnungen fur Linseneigenschaften

Die soeben konstruierten Linsen, ob nun flach oder dick, werden als bikonvex
bezeichnet, wobei die Woélbungseigenschaft (kovex oder konkav) jeweils vom
Linsenkorper aus gerechnet ist. Eine solche Bikonvexlinse besitzt eine positive
Brennweite und daher positive Losungen der Linsengleichung fiir ¢ und b. Sie
ist fokussierend, denn sie bildet einen Parallelstrahl (¢ = oo) auf den Brenn-
punkt (b = f) ab und wird im Volksmund als Sammellinse bezeichnet. Im
Gegensatz dazu besitzt eine defokussierende Linse negative Brennweite und
folglich keine durchgangig positive Losung der Linsengleichung. Ein Paral-
lelstrahl wird von der Achse fortgelenkt, der Brennpunkt einer solche Linse
ergibt sich aus der rickwartigen Verlangerung der ausgehenden Strahlen. Man
spricht von Streulinsen, und diese sind im allgemeinen bikonkav. Gemischt
konvex-konkave Linsen sind je nach dem Verhaltnis der Krummungsradien fo-
kussierend oder defokussierend. Die Brennweite wird einschlieflich ihres Vor-
zeichens im Kehrwert als Brechkraft angegeben, die entsprechende Einheit ist
die Dioptrie (1dpt = 1m™1)
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2.3.5 Kombinationen aus Linsen

Als letzte Anwendung wollen wir das Brechungsverhalten zweier im Abstand d
hintereinanderliegender Linsen der Brennweiten f; > 0 und — f; < 0 berechnen.
Die Luft zwischen den beiden Linsen stellt erneut einen Driftraum dar. Man
erhalt aus der Kombination der Matrizen

(1/1f2 2) (é il) <_1l/f1 ?> N (1/f2 —117fcll/fld/f1f2 1-|-66ll/f2>'

Diese Kombination ist fokussierend fiir

1 1 d

Y

Fur fi = f2 ist diese Linsenkombination stets fokussierend.

& hH—fo<d

2.4 Interferenz

Bei der Interferenz handelt es sich um die Uberlagerung von Wellen. Ob es sich
bei diesen Wellen um elektromagnetische Wellen oder Wellenphéanomene ganz
anderer Art handelt, beispielsweise um Wasserwellen, spielt zunachst einmal
keine Rolle. Wichtig ist nur die Gutigkeit der folgenden zwei Grundprinzipien:

1) Da die Wellengleichungen linear sind, addieren sich die Amplituden A der
verschiedenen an einem Punkt wirksamen Wellen.

2) Die relevante Mefgrofle, die als Intensitdt bezeichnet wird (beim Licht
die Energiedichte des Lichtes) ist proportional zum Betragsquadrat der
Amplitude, I ~ |A]%.

Wir wollen in diesem Abschnitt noch zwei weitere Grundannahmen machen:

3) Es besteht eine feste Phasenbeziehung zwischen den Wellenerregern.

4) Die Wellenlénge ist dieselbe.

Diese zwei Grundannahmen (erstere ist die Forderung der Kohdrenz) garan-
tieren die Stationaritat der Situation, also die zeitliche Konstanz des Inten-
sitatsmusters. Als Einstieg betrachten wir zwei an einem Punkt zusammen-
fallende Wellen derselben Frequenz, aber unterschiedlicher Phasen ¢ und s.
Die Summe der Wellenfunktionen an diesem Punkt liefert

¢(F07t) = 77Z)1(F07t) + 77Z)2(F07t) =
— Alei(wt+991) + Azei(wt—i-goz) — i (Alewl + Azei“o?) ‘

Somit ergibt sich fir die Intensitat

I = [(Fo, t)> = ™™™ (A" + Ape'??) (A1 + Aye™%?) =
= A2 4 A2 Ay Ay (61917502 peivamien) 2 A2 4 A2 494 Ay cos(or — 0a).

Fiir zwei Wellen gleicher Amplitude 4; = Ay = A gilt 0 < I < 4A?%. Der

tatsachliche Wert der Intensitat hangt einzig und allein von der Phasendifferenz
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§ = 1 — 2 ab. Fiir I = 0 spricht man von destruktiver, fiir I = 4A% von kon-
struktiver Interferenz. Die Phasendifferenz kann zum einen durch tatsachlich
unterschiedliche Anfangsphasen, zum anderen aber auch durch Laufzeitunter-
schiede aus dem unterschiedlichen Abstand zu den beiden Erregungszentren
stammen. Man kann beide Phanomene formal voneinander trennen,

2
5= 01— 2= 21(0) = 2(0) + TA,

A heilt Gangunterschied, X\ ist die Wellenldnge. In einem Experiment werde
die Wasseroberflache von zwei rhythmisch ins Wasser eintauchenden Stiften
an zwel nebeneinanderliegenden Punkten am Rand einer Wasserwanne aus zu
Schwingungen angeregt. Man erkennt ein Interferenzmuster, welches Zonen
konstruktiver und destruktiver Interferenz aufweist. Da die Anfangsphasen
gleich sind, handelt es sich um einen Effekt des Gangunterschiedes,

2 2
(S = TFA = TF(Tl — Tz),

wobei r; und r9 die Abstande zu den beiden Erregungszentren sind. Destruk-
tive Interferenz ergibt sich fiir § = (2n + 1)x, also flir einen Gangunterschied

A A
r—ry = ﬁ(Zn — 1) =(2n-— 1)5,
konstruktive Interferenz dagegen fiir § = 2nm, also
T4 — Tro = nA.
2.4.1 Vielstrahlinterferenz
Wir betrachten eine Anzahl von n Wellen einer festen Phasenbeziehung
Yk = Pr—1 T ¥, ke{2,3,...,n}

mit gleicher Amplitude A. Dann ergibt sich durch Uberlagerung

A, = Ae™! <1 +e et 4+ ei("_l)“o> )

Imy

NSO
N

. 7 [N [EAERAN S
A1e|¢ -7 [N ~ RN <
S / \ < RS N ~
I S NN Y
Sy , \ N I v N N
L) PR S ' \ \ N
’ ’ M - 1 \ \ N
’ H 1 A -7 1 v \
Azelq) / [ | \ \
, X Az ! \ N
, - \ 1 \
\ v

Re A=A,

Abb. 2.13 Komplexe Darstellung einer Uberlagerung zweier (links) und vieler Wellen (rechts)
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Um die Situation dieser U'berlagerung (Superposition) anschaulicher zu ma-
chen, stellen wir in Abbildung 2.13 links die Amplituden aus dem ersten Bei-
spiel in der komplexen Ebene als Addition zweier Vektoren dar. Ist die Phase
der ersten Welle auf Null gesetzt, so liegt der erste der Vektoren auf der re-
ellen Achse, der zweite kann statt vom Ursprung aus auch an der Pfeilspitze
des ersten ansetzen. Dies ist in der Mitte der Abbildung zu erkennen. Zugleich
konnen auf den beiden Vektoren gleichschenklige Dreiecke errichtet werden, die
eine Seite der Lange r und den Scheitelpunkt gemeinsam haben. Entsprechend
kommen bei der Vielstrahlinterferenz weitere Vektoren und Dreiecke hinzu, die
alle denselben Scheitelpunkt besitzen. Fur die Amplituden ergibt sich so

A o | A . <<,9> | Az | . | Az | . 3
— i =T—=rsin(=), —— =rsinyp, =rsin| — |,
2 2 2 2

und damit ‘ )
|A,| = 2rsin <@> = M
(/2

2
Dieses Ergebnis ergibt sich tibrigens auch ohne Anschauung aus der Formel fur
die geometrische Reihe,

(2.26)

Ay = A (T e 4 emD2) = et
1 — e
B cine/2 <€—znap/2 _ e“w/2> it _ sin(mp/Q)ei(n_l)@/zeiwt‘
eie/? (e—ivl? — ¢ivf?) sin(y/2)

Frage ist nun, bei welchen Werten der relativen Phase ¢ ein Maximum bzw.
Minimum zu erwarten ist. Minima sind sicherlich diejenigen Stellen, an denen
der Zahler, nicht aber der Nenner verschwindet. Dies ist unter der Bedingung
ne = 27k, k € {0,1,2,... } gegeben, wenn ¢ selbst kein Vielfaches von 27
ist. Doch was ist, wenn letzteres erfullt ist? Hier kann die I’'Hospitalsche Regel
angewendet werden, um den Wert an dieser Stelle zu bestimmen,

—nA fur ¢ — 27m.
| cos(/2)|

Mit I,, = n?A? sind dies die Hauptmazima, an denen es zur maximalen kon-
struktiven Interferenz kommt. Die Nebenmazima liegen bei ne = (2k + 1),
k€{0,1,2,... }, sie fallen stark gegen das Hauptmaximum ab, denn fiir ihre
Intensitat gilt ndherungsweise

I — A2 sin’ (ng/2) ~ A2 1 4n? A?

sin’(p/2) 0 (9/2 T (2k+ 122

So erhalt man fiir das erste Nebenmaximum nur 4.5% und fiir das zweite Ne-
benmaximum nur 1.62% der Intensitat des Hauptmaximums.
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Abb. 2.14 Interferenzmuster (links) und Uberlegungen am optischen Gitter (Mitte und rechts)

2.4.2 Anwendung: Das Beugungsgitter

Ein optisches Liniengitter, also ein Raster aus lichtdurchlassigen Spalten und
lichtundurchlassigen Lamellen, auf das ein Lichtstrahl fallt, stellt in idealer
Weise ein Beispiel fur ein solches Ensemble n gleichfrequenter und gleichinten-
siver Lichtstrahlen einer konstanten Phasendifferenz dar. Fallt der Lichtstrahl
senkrecht auf das Gitter, so sind diese Punktquellen in Phase, und die Pha-
sendifferenz auf dem dahinter liegenden Schirm ist durch den Gitterabstand
(also den Abstand zwischen den einzelnen Gitterstdben) und den Winkel 6 zur
Normalen bestimmt. Wie aus Abbildung 2.14 in der Mitte zu entnehmen ist,
ist der Gangunterschied zwischen zwei benachbarten Oszillatoren

A =bsinfd = = QTﬂ-b sinf (b ist der Gitterabstand).

b > X ist Voraussetzung daftr, dafl ein Hauptmaximum entstehen kann. Die
Lage der Hauptmaxima ist nach Gleichung (2.26) gegeben durch die Bedingung

A=bsind=m\ me{0,1,2,... }.

Die Lage dieser Hauptmaxima, abgesehen von dem ersten mit m = 0, ist linear
abhangig von der Wellenlange des eingestrahlten Lichtes. Ein Liniengitter zer-
legt damit einen multifrequenten Strahl in seine spektralen Anteile, und diese
Aufspaltung nimmt zu, je kleiner der Gitterabstand gewahlt ist. Im Experi-
ment messen wir das Linienspektrum der Quecksilberdampflampe, indem wir
ihr Licht durch ein Liniengitter hindurchschicken und das Spektrum in 3 Me-
tern Abstand messen. Fur die Spektrallinie der Wellenlange A = 435.8nm
ergibt sich eine Auslenkung von 87cm, die auf einen Gitterabstand b ~ 1.7um
schlieflen 1ait. Dieser Wert ergibt sich auch aus den Herstellerdaten, in denen
fur dieses Gitter 567 Striche pro mm angegeben sind. Das Auftreten eines dis-
kreten Linienspektrums, wie es hier zu beobachten ist, hat ibrigens etwas mit
elektronischen U'bergéngen in der Atomhtlle zu tun, ein Vorgang, der erst im
Rahmen der Quantenoptik im néachsten Semester zur Sprache kommen kann.

Féallt der Lichtstrahl nicht senkrecht, sondern schrag auf das Liniengitter,
so schwingen die Oszillatoren entsprechend phasenversetzt. Man kann auch die
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Reflexion am Gitter betrachten, wie in Abbildung 2.14 rechts dargestellt. Ist
61 der Einfall- und 6, der Ausfallwinkel, so ist der Gangunterschied

A =dsinf; —dsinb,.
Die Bedingung fur die Hauptmaxima ist A = mA. Das erste Hauptmaximum

ergibt sich daher fur 61 = 6;, also genau auf dem Winkel, fur den eine spiegelnde
Flache statt des Gitters den Reflex gegeben hatte.

2.4.3 Koharenz und Laser
Interferenz tritt nur bei Kohdrenz auf, also bei ei-

ner festen Phasenbeziehung zwischen den Wellenerre-
gern. Verschiedene Lichtquellen liefern dagegen kein
koharentes Licht, da die Lichterzeugung aus atoma-

ren Prozessen stammt. Diese Prozesse senden Wellen- /WM/W\/\M/\/\NW
pakete einer begrenzten Zeitdauer aus, wie in Abbil- ‘ ‘
dung 2.15 gezeigt, und die Lange dieser Pakete, auch Koharenzlange

als Koharenzlange bekannt, hangt davon ab, welche

Lebensdauer der Prozefl besitzt, aus dem das Licht
stammt.

Abb. 2.15 Wellenpaket und Koharenzliange
Fiir Metalldampfe beispielsweise ist At ~ 107%s, die Kohérenzlinge daher
l. = cAt ~ 3m. Fiir Festkorper ist At ~ 10775, die Koharenzlange [, = cAt ~
30cm. Sollen zwei Strahlen, die aus derselben Quelle stammen, miteinander
interferieren konnen, so darf der Lichtweg beider Strahlen nicht grofler gewahlt
werden als die Kohérenzlange, |l — 3| < l.. Interferometer sind Apparaturen,
welche dies berticksichtigen. Sie sind im nachsten Unterabschnitten aufgefihrt.
Ein anderes Verfahren, koharentes Licht zu erzeugen, ist die Verwendung eines
Lasers. Sein Bauprinzip kann hier nicht erlautert werden. Soviel sei aber
gesagt, dafl er auf der stimulierten Emission beruht, bei der also ein Lichtstrahl
weitere Atome zur Emission von Wellenpaketen anregt, die dann mit dem ersten
in Phase sind.

2.4.4 Interferometer und Spektrometer

Ein aus der Relativitatstheorie bekanntes Interferometer ist dasjenige, das auf
den amerikanischen Physiker Albert A. Michelson (1852-1931) zuriickgeht.

Es nutzt die Interferenz zwischen direktem

und reflektiertem Strahl aus, um Entfer- S0l
nungsinderungen préazise (d.h. mit einer Ge-
nauigkeit von der Groflenordnung der Wel-
lenlénge) zu messen. Diese Genauigkeit |
machte die in Abbildung 2.16 dargestellte
Apparatur zu einem idealen Werkzeug, um |
die von einem mit der speziellen Relati-
vitatstheorie Albert Einsteins konkurrieren-
den Modell vorhergesagte Langenkontrak-
tion der Apparatur gegenuber dem Ather zu
messen — und dies zu seinem Nachteil, wie

Schirm

Spiegel 1

Spiegel 2 i verschiebbar

sich herausstellte. Abb. 2.16 Michelsonsches Interferometer
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Der Strahl, der von einer Lichtquelle ausgeht, wird durch einen halb-
durchlassigen Spiegel in der Mitte aufgeteilt in zwei zueinander senkrechte
Anteile, die nach ihrer jeweiligen Reflexion zur Interferenz gebracht werden.
Verschiebt man einen der Spiegel mit einer Mikrometerschraube, so ist eine
Veranderung der Interferenzringe auf dem Schirm zu erkennen. Jeder neu auf-
tretende Ring entspricht dabei einer Phasenverschiebung um A/2. In der Praxis
ist diese Genauigkeit aber viel zu hoch. Hier benutzt man die Schwebungsei-
genschaft zwischen zwei dicht benachbarten Spektrallinien.

Als Lichtquelle benutzen wir im Experiment eine Natriumdampflampe, aus
deren Spektrum wir die Linien Na—Dq und Na—D3 mit den Wellenlangen Ay =
588.9965nm bzw. Ay = 589.5932nm herausfiltern. Wir konnen die folgenden

beiden Situationen identifizieren:

- Stellung 1: Der Gangunterschied zwischen den zwei Lichtwegen verschwin-
det, d = 0. Diese Stellung ist an der deutlichen Helligkeit im Zentrum
des Interferenzmusters aus konzentrischen Kreisen zu erkennen, wo sich in
diesem Fall die Hauptmaxima sowohl fiir Na — Dy als auch fir Na — D,
befinden. Das Bild ist im Zentrum kontrastreich.

- Stellung 2: Ausgehend von Stellung 1 suchen wir die Position, bei der das
Bild maximal verwaschen ist. Dies ist der Fall, wenn das Hauptmaximum
zu Na— Dy mit dem darauf folgenden Minimum zu Na— Dy zusammenfallt
und sich Zonen konstruktiver und destruktiver Interferenz in der Nahe des
Zentralbereichs erganzen.

Forderung ist also (wegen A1 < A3)

Az
n\=d=n-1/2)\s & n =)
Aus den Angaben erhalten wir etwa einen Wert n &~ 494 und damit einen Gang-
unterschied d = nA\; ~ 0.3mm. Der Spiegel ist also um die Halfte dieses Weges
verschoben worden. Statt aus bekannten Frequenzen auf eine Langenanderung
zu schliefen, kann die Apparatur auch dazu verwendet werden, mit Hilfe der
beobachteten Effekte die Wellenldngen selbst zu bestimmen. Man bezeichnet
die Apparatur dann als Spektrometer.

o L L

Als weiteres Interferometer sei hier der P! 2
Fresnelsche Doppelspiegel genannt. FEr ist \ - /
in Abbildung 2.17 dargestellt und simu-
liert zwei koharente Lichtquellen. Das Wir-
kungsprinzip dieses Doppelspiegels soll mit

s \ Zo
der ebenfalls dargestellten Kreiskonstruk- L
tion erlautert werden. Der auf dem Kreis .

liegende Lichtpunkt L wird durch die bei-
den im Kreismittelpunkt zusammenlaufen-
den Spiegelebenen auf die virtuellen Licht-

punkte Ll und L2 abgeblldet' Abb. 2.17 Fresnelscher Doppelspiegel
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Schirm

Abb. 2.18 Interferometer nach Fabry und Perot (links) und Lummer und Gehrke (rechts)

In Abbildung 2.18 sind zwei weitere Interferometer dargestellt. Das nach den
franzosischen Physikern Fabry und Perot benannte Interferometer (in der Ab-
bildung links) benutzt die Mehrfachreflexion an zwei genau parallel zu ju-
stierenden Glasplatten. Die durchgelassenen Strahlen werden von einer Linse
gebundelt. Die Beobachtung von Schwebungserscheinungen kann zum Nach-
wels kleinster Wellenlangendifferenzen benutzt werden. Das Interferometer
der deutschen Physik Otto Lummer (1860-1935) und Ernst Gehrke (1878-
1960) (rechts) besitzt ein ahnliches Bauprinzip, nur daf es sich hier um eine
durchgehende Glasplatte handelt, aus der oben und unten die Strahlen aus-
treten und nach vorne gebundelt werden. Besonders trickreich ist die Idee des
Einfuhrungskeils, die von Gehrke stammt. Tabelle 2.3 zeigt einige zur Fre-
quenztrennung benutzte Interferometer.

Gerat | techn. Daten Zahl der interfe- Auflosung
rierenden Strahlen
Prisma | dn/d\ ~ 1730cm™" | — AJAN = 17300
Strichgitter | Basis 10cm
np ~ 1.76
16cm Breite 10° AAN=3-10°
Michelson 2 NAN > 10
Lummer-Gehrke | Lange 20cm
Dicke lcm 36 MNAN=4-10°
Fabry-Perot | lem Abstand 30 AAN = 10°
10cm Abstand 30 MAN =107

Tab. 2.3 Gegeniiberstellung verschiedener Spektrometer und Interferometer

2.5 Beugung

Unter Beugung versteht man die Abweichungen vom Strahlengang der geome-
trischen Optik, die sich ergeben, wenn die Dimensionen der Objekte, auf die
das Licht fallt, von der Groflenordnung der Wellenlange des Lichtes sind. Wir
wollen zunéchst die Fraunhofersche Beugung (benannt nach Joseph Fraunho-
fer (1787-1826), deutscher Physiker) am Spalt betrachten, bevor wir auf eine
allgemeinere Beugungstheorie eingehen. Der Spalt soll hier exemplarisch fur
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weitere Geometrien wie Strich-, Kreuz- und Raumgitter stehen, die ahnlich zu

behandeln sind.
2.5.1 Beugung am Spalt mit senkrechtem Lichteinfall

Benutzt wird hier die Vielstrahlinterferenz,
wobel nach der Aufteilung der Spaltbreite
in p gleiche Stucke der Grenzubergang p —
oo vollzogen wird. Der Gangunterschied _t v B vov AT

zwischen zwei benachbarten Teilstrahlen ist

gemafl Abbildung 2.19 gegeben als F

2rd —
§=2"2 mit d = BF = bsin ¢.
Ap

Abb. 2.19 Beugung am Spalt

Ist Be'“! die Amplitude am Punkt A, also diejenige des ersten Teilstrahls, so
gilt entsprechend fur die Gesamtamplitude

A= ﬁeiwt(l + e—ié + €—2i6 4.+ e—i(p—l)é) —
— ﬁethl — e — eiwt SlIl(p(S/Q) e—i(p—1)5/2
1 —et sin(6/2) '

Ausgedriickt durch die Phasendifferenz A = pd zwischen erstem und letztem
Strahl ergibt sich
A = ﬁeiwt sin(A/2) o—ip—1)A/2p.
sin(A/2p)

Im Grenzfall p — oo erhalt man mit Ag = Op

A= Aoeiwt SIH(A/Q) —iA /2

A2 ©
und damit schliellich fir die Intensitat
)
5 sin“(A/2) ] 27b .
I = AOW mlt A == T S111 99 (227)

Fir ¢ = 0, also in Verlangerung des einfallenden Strahls, liegt das Hauptmaxi-
mum oder Zentralbild mit Intensitat Iy = A3. Weitere charakteristische Stellen
sind

2) d = \/2: abfallende Flanke, I = 4I/7* = 0.4061,

3) d = \: erstes Minimum, [ =0

4) d = 3\/2: erstes Nebenmaximum, I = 415/97% = 0.0451,

5) d = 2\: zweites Minimum, I = 0

6) ...

Das Beugungsmuster steht dabei senkrecht zum Spalt, wahrend es in Richtung
des Spaltes die Ausdehnung des Strahls besitzt. Ganz allgemein gilt, dafl das
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Beugungsmuster stets eine zum beugenden Objekt komplementare Ausdehnung
besitzt. Fir eine Rechteckoffnung ergibt sich so auch

.2 .2

sin“(A;/2) sin“(A,/2) mit A, — 27b;
(Ac/2)2 (Ay/2)? A
wobei b, und b, die Ausdehungen in z- und y-Richtung und ¢, und ¢, die
Winkelauslenkungen in diese Richtungen sind. Als Interferenzmuster ergibt
sich ein Rechteckmuster mit einer Rasterung der Lange 2\ /b;, also ein Raster
der komplementaren Ausdehung. Fur eine kreisformige Offnung erhalt man
schliellich ein ringformiges Muster, das ausgedehnter wird, je enger das Loch
geschlossen ist.

2.5.2 Das Babinetsche Theorem

I =1

sing;, 1 €q{x,y}, (2.28)

Eine Komplementaritat anderer Art postuliert das Babinetsche Theorem:

Komplementare Schirme liefern bei Fraunhoferscher Beugung aufler-
halb des Bereiches der geometrischen optischen Abbildung die gleichen
Beugungserscheinungen.

Komplementér heiBt in diesem Zusammenhang, daB eine Offnung durch eine
undurchsichtige Blende vertauscht wird und umgekehrt. Als Versuch dazu
betrachten wir die Beugungserscheinungen an einem Draht und einem Spalt
gleichen Durchmessers bzw. Breite.

2.5.3 Beugungstheorie

Zum Abschluf soll hier ganz kurz die Beugungstheorie angerissen werden (aus-
fithrlicher findet sie sich in Max Borns ,,Optik* in §45). Die Beugungstheorie
macht drei Annahmen tuber die Lichterregung in der Blendenebene, d.h. der
Ebene, welche sich aus der Fortsetzung der Blendenwénde ergibt:

- Es gilt das Huygenssche Prinzip, nach dem sich das Licht im Raum 2 so
ausbreitet, als wenn von jedem Punkt der Blendenoffnung eine Kugelwelle
der Form

ezkr

A= A(B)

”
ausginge (zu den Bezeichnungen vergleiche Abbildung 2.20 links).

- Die Erregung in der Blendenoffnung B ist dieselbe, als wenn keine Blende
vorhanden wéare, und wird von einer Kugelwelle verursacht, die von der
Quelle @ im Abstand r’ zur Blendenoflnung stammt,

eikr'

A(B) = Ao

- Auf dem Blendenwanden ist A = 0.

Durch Uberlagerung der Kugelwellen ergibt sich die Amplitude am Beobach-
tungspunkt P uber die Kirchhoff-Fresnelsche Beugungsformel

A(P)=C / A(B)elkr

T/

(cos(r, ) — cos(ri,7"))dB =
-
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Bereich 1 = | Bereich 2

-

rv///'

Abb. 2.20 Konstruktion der Beugungstheorie, rechts die Naherung kleiner Blendenéffnung

(Gustav Robert Kirchhoff (1824-1887), deutscher Physiker). Wir betrachten
nun die Naherung kleiner Blendenoffnung, wie sie in Abbildung 2.20 rechts
dargestellt ist, und legen den Ursprung des Koordinatensystems in den einen
Randpunkt der Blende. Dann ist der Ortsvektor des Empfangpunktes P mit
R und der Ortsvektor der Quelle @) mit R’ gegeben, wohingegen der Verbin-
dungsvektor von einem beliebigen Punkt der Blendenoffnung mit Ortsvektor
7o beispielsweise zu P in das als klein anzunehmende Verhéltnis ro/R zu ent-
wickeln ist,

— —

. N i .
r=R-—ry mit R- Oerocos<§—0z>:Rrosma =

— 9 27“0. 7“8
r=4/R2—-2R-7o+ri=R 1—§sma—l—ﬁ:
To . 7“3 7“3 -2
%R(l—Esmoz—l—ﬁ—ﬁsm oz—l—...):
2
:R—rosinoz—l—ﬁcoszoz—l—...,
entsprechend fiir 7 = R’ — 7
2
r’zR’—rosino/—l—27;%/cos2a’+....
Im Fall ) )
rg 2w ro 2w
E-T<<7T und E-T<<7T

berticksichtigt man nur die fiuhrende lineare Ordnung dieser Entwicklungen und
gelangt zur Fraunhoferschen Naherung, die gegeben ist durch

A(P) ~ %eik(R""R/)(cos a+ cosa’) / ¢tkro(sinatsina’) yp. (2.29)
RR' B
Diese Naherung betrachtet die einfallenden wie auslaufenden Strahlen als par-
allel, wie wir es bereits in den Uberlegungen der vorangegangenen Unterab-
schnitte stillschweigend angenommen haben. Der Gangunterschied ist dabei
gegeben als
r— R+ — R ~ ro(sin o + sino/),

was sich zuvor aus geometrischen U'berlegungen ergab. Nehmen wir in den
Entwicklungen noch die quadratischen Terme mit hinzu, so gelangen wir zur
Fresnelschen Ndherung, auf die hier nicht genauer eingegangen werden kann.
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